Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfbd Structured version   Visualization version   GIF version

Theorem bj-nnfbd 34908
Description: If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi 34907. (Contributed by BJ, 27-Aug-2023.)
Hypothesis
Ref Expression
bj-nnfbd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
bj-nnfbd (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem bj-nnfbd
StepHypRef Expression
1 bj-nnfbd.1 . 2 (𝜑 → (𝜓𝜒))
21alrimiv 1930 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 bj-nnfbi 34907 . 2 (((𝜓𝜒) ∧ ∀𝑥(𝜓𝜒)) → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒))
41, 2, 3syl2anc 584 1 (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator