Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfbii Structured version   Visualization version   GIF version

Theorem bj-nnfbii 34836
Description: If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, inference form. See bj-nnfbi 34834. (Contributed by BJ, 18-Nov-2023.)
Hypothesis
Ref Expression
bj-nnfbii.1 (𝜑𝜓)
Assertion
Ref Expression
bj-nnfbii (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)

Proof of Theorem bj-nnfbii
StepHypRef Expression
1 bj-nnfbii.1 . 2 (𝜑𝜓)
2 bj-nnfbi 34834 . 2 (((𝜑𝜓) ∧ ∀𝑥(𝜑𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓))
31, 2bj-mpgs 34718 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-bj-nnf 34833
This theorem is referenced by:  bj-nnfbit  34861  bj-nnfbid  34862
  Copyright terms: Public domain W3C validator