|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfbi | Structured version Visualization version GIF version | ||
| Description: If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other. Compare nfbiit 1850. From this and bj-nnfim 36748 and bj-nnfnt 36742, one can prove analogous nonfreeness conservation results for other propositional operators. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 36743) in order not to require sp 2182 (modal T). (Contributed by BJ, 27-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| bj-nnfbi | ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-hbyfrbi 36633 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜓 → 𝜓))) | |
| 2 | bj-hbxfrbi 36632 | . . 3 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))) | |
| 3 | 1, 2 | anbi12d 632 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥𝜓 → 𝜓) ∧ (𝜓 → ∀𝑥𝜓)))) | 
| 4 | df-bj-nnf 36726 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
| 5 | df-bj-nnf 36726 | . 2 ⊢ (Ⅎ'𝑥𝜓 ↔ ((∃𝑥𝜓 → 𝜓) ∧ (𝜓 → ∀𝑥𝜓))) | |
| 6 | 3, 4, 5 | 3bitr4g 314 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 ∃wex 1778 Ⅎ'wnnf 36725 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-bj-nnf 36726 | 
| This theorem is referenced by: bj-nnfbd 36728 bj-nnfbii 36729 | 
| Copyright terms: Public domain | W3C validator |