Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfed Structured version   Visualization version   GIF version

Theorem bj-nnfed 34914
Description: Nonfreeness implies the equivalent of ax5e 1915, deduction form. (Contributed by BJ, 2-Dec-2023.)
Hypothesis
Ref Expression
bj-nnfed.1 (𝜑 → Ⅎ'𝑥𝜓)
Assertion
Ref Expression
bj-nnfed (𝜑 → (∃𝑥𝜓𝜓))

Proof of Theorem bj-nnfed
StepHypRef Expression
1 bj-nnfed.1 . 2 (𝜑 → Ⅎ'𝑥𝜓)
2 bj-nnfe 34913 . 2 (Ⅎ'𝑥𝜓 → (∃𝑥𝜓𝜓))
31, 2syl 17 1 (𝜑 → (∃𝑥𝜓𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-bj-nnf 34906
This theorem is referenced by:  bj-nnfand  34931  bj-nnford  34933
  Copyright terms: Public domain W3C validator