Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfand | Structured version Visualization version GIF version |
Description: Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34975, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34975 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34976 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-nnfand.1 | ⊢ (𝜑 → Ⅎ'𝑥𝜓) |
bj-nnfand.2 | ⊢ (𝜑 → Ⅎ'𝑥𝜒) |
Ref | Expression |
---|---|
bj-nnfand | ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.40 1887 | . . 3 ⊢ (∃𝑥(𝜓 ∧ 𝜒) → (∃𝑥𝜓 ∧ ∃𝑥𝜒)) | |
2 | bj-nnfand.1 | . . . . 5 ⊢ (𝜑 → Ⅎ'𝑥𝜓) | |
3 | 2 | bj-nnfed 34959 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) |
4 | bj-nnfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ'𝑥𝜒) | |
5 | 4 | bj-nnfed 34959 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → 𝜒)) |
6 | 3, 5 | anim12d 610 | . . 3 ⊢ (𝜑 → ((∃𝑥𝜓 ∧ ∃𝑥𝜒) → (𝜓 ∧ 𝜒))) |
7 | 1, 6 | syl5 34 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒))) |
8 | 2 | bj-nnfad 34956 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
9 | 4 | bj-nnfad 34956 | . . . 4 ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) |
10 | 8, 9 | anim12d 610 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒))) |
11 | 19.26 1871 | . . 3 ⊢ (∀𝑥(𝜓 ∧ 𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒)) | |
12 | 10, 11 | syl6ibr 252 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) |
13 | df-bj-nnf 34951 | . 2 ⊢ (Ⅎ'𝑥(𝜓 ∧ 𝜒) ↔ ((∃𝑥(𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜒)) ∧ ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒)))) | |
14 | 7, 12, 13 | sylanbrc 584 | 1 ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1537 ∃wex 1779 Ⅎ'wnnf 34950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-bj-nnf 34951 |
This theorem is referenced by: bj-nnfbid 34980 |
Copyright terms: Public domain | W3C validator |