Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfand Structured version   Visualization version   GIF version

Theorem bj-nnfand 35713
Description: Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 35712, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 35712 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 35713 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-nnfand.1 (𝜑 → Ⅎ'𝑥𝜓)
bj-nnfand.2 (𝜑 → Ⅎ'𝑥𝜒)
Assertion
Ref Expression
bj-nnfand (𝜑 → Ⅎ'𝑥(𝜓𝜒))

Proof of Theorem bj-nnfand
StepHypRef Expression
1 19.40 1889 . . 3 (∃𝑥(𝜓𝜒) → (∃𝑥𝜓 ∧ ∃𝑥𝜒))
2 bj-nnfand.1 . . . . 5 (𝜑 → Ⅎ'𝑥𝜓)
32bj-nnfed 35696 . . . 4 (𝜑 → (∃𝑥𝜓𝜓))
4 bj-nnfand.2 . . . . 5 (𝜑 → Ⅎ'𝑥𝜒)
54bj-nnfed 35696 . . . 4 (𝜑 → (∃𝑥𝜒𝜒))
63, 5anim12d 609 . . 3 (𝜑 → ((∃𝑥𝜓 ∧ ∃𝑥𝜒) → (𝜓𝜒)))
71, 6syl5 34 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → (𝜓𝜒)))
82bj-nnfad 35693 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
94bj-nnfad 35693 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
108, 9anim12d 609 . . 3 (𝜑 → ((𝜓𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒)))
11 19.26 1873 . . 3 (∀𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒))
1210, 11imbitrrdi 251 . 2 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
13 df-bj-nnf 35688 . 2 (Ⅎ'𝑥(𝜓𝜒) ↔ ((∃𝑥(𝜓𝜒) → (𝜓𝜒)) ∧ ((𝜓𝜒) → ∀𝑥(𝜓𝜒))))
147, 12, 13sylanbrc 583 1 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1539  wex 1781  Ⅎ'wnnf 35687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782  df-bj-nnf 35688
This theorem is referenced by:  bj-nnfbid  35717
  Copyright terms: Public domain W3C validator