Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfand Structured version   Visualization version   GIF version

Theorem bj-nnfand 34910
Description: Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34909, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34909 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34910 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-nnfand.1 (𝜑 → Ⅎ'𝑥𝜓)
bj-nnfand.2 (𝜑 → Ⅎ'𝑥𝜒)
Assertion
Ref Expression
bj-nnfand (𝜑 → Ⅎ'𝑥(𝜓𝜒))

Proof of Theorem bj-nnfand
StepHypRef Expression
1 19.40 1892 . . 3 (∃𝑥(𝜓𝜒) → (∃𝑥𝜓 ∧ ∃𝑥𝜒))
2 bj-nnfand.1 . . . . 5 (𝜑 → Ⅎ'𝑥𝜓)
32bj-nnfed 34893 . . . 4 (𝜑 → (∃𝑥𝜓𝜓))
4 bj-nnfand.2 . . . . 5 (𝜑 → Ⅎ'𝑥𝜒)
54bj-nnfed 34893 . . . 4 (𝜑 → (∃𝑥𝜒𝜒))
63, 5anim12d 608 . . 3 (𝜑 → ((∃𝑥𝜓 ∧ ∃𝑥𝜒) → (𝜓𝜒)))
71, 6syl5 34 . 2 (𝜑 → (∃𝑥(𝜓𝜒) → (𝜓𝜒)))
82bj-nnfad 34890 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
94bj-nnfad 34890 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
108, 9anim12d 608 . . 3 (𝜑 → ((𝜓𝜒) → (∀𝑥𝜓 ∧ ∀𝑥𝜒)))
11 19.26 1876 . . 3 (∀𝑥(𝜓𝜒) ↔ (∀𝑥𝜓 ∧ ∀𝑥𝜒))
1210, 11syl6ibr 251 . 2 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
13 df-bj-nnf 34885 . 2 (Ⅎ'𝑥(𝜓𝜒) ↔ ((∃𝑥(𝜓𝜒) → (𝜓𝜒)) ∧ ((𝜓𝜒) → ∀𝑥(𝜓𝜒))))
147, 12, 13sylanbrc 582 1 (𝜑 → Ⅎ'𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1785  Ⅎ'wnnf 34884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-bj-nnf 34885
This theorem is referenced by:  bj-nnfbid  34914
  Copyright terms: Public domain W3C validator