| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfim2 | Structured version Visualization version GIF version | ||
| Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
| Ref | Expression |
|---|---|
| bj-nnfim2 | ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-nnfa 36729 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 2 | bj-nnfe 36732 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) | |
| 3 | imim12 105 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) → ((∃𝑥𝜓 → 𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓)))) | |
| 4 | 3 | imp 406 | . 2 ⊢ (((𝜑 → ∀𝑥𝜑) ∧ (∃𝑥𝜓 → 𝜓)) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) |
| 5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-bj-nnf 36725 |
| This theorem is referenced by: bj-nnfim 36747 |
| Copyright terms: Public domain | W3C validator |