Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfim2 Structured version   Visualization version   GIF version

Theorem bj-nnfim2 34664
Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.)
Assertion
Ref Expression
bj-nnfim2 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓)))

Proof of Theorem bj-nnfim2
StepHypRef Expression
1 bj-nnfa 34647 . 2 (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
2 bj-nnfe 34650 . 2 (Ⅎ'𝑥𝜓 → (∃𝑥𝜓𝜓))
3 imim12 105 . . 3 ((𝜑 → ∀𝑥𝜑) → ((∃𝑥𝜓𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓))))
43imp 410 . 2 (((𝜑 → ∀𝑥𝜑) ∧ (∃𝑥𝜓𝜓)) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓)))
51, 2, 4syl2an 599 1 ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541  wex 1787  Ⅎ'wnnf 34642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-bj-nnf 34643
This theorem is referenced by:  bj-nnfim  34665
  Copyright terms: Public domain W3C validator