|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfim1 | Structured version Visualization version GIF version | ||
| Description: A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) | 
| Ref | Expression | 
|---|---|
| bj-nnfim1 | ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-nnfe 36732 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 2 | bj-nnfa 36729 | . 2 ⊢ (Ⅎ'𝑥𝜓 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | imim12 105 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜑) → ((𝜓 → ∀𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))) | |
| 4 | 3 | imp 406 | . 2 ⊢ (((∃𝑥𝜑 → 𝜑) ∧ (𝜓 → ∀𝑥𝜓)) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | 
| 5 | 1, 2, 4 | syl2an 596 | 1 ⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎ'wnnf 36724 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-bj-nnf 36725 | 
| This theorem is referenced by: bj-nnfim 36747 | 
| Copyright terms: Public domain | W3C validator |