![]() |
Metamath
Proof Explorer Theorem List (p. 357 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cpsl 35601 | Splitting field for a sequence of polynomials. |
class polySplitLim | ||
Definition | df-cplmet 35602* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
Definition | df-homlimb 35603* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
Definition | df-homlim 35604* | The input to this function is a sequence (on ℕ) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB ‘𝑓) / 𝑒⦌⦋(1st ‘𝑒) / 𝑣⦌⦋(2nd ‘𝑒) / 𝑔⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉, 〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪ {〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx), ∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) | ||
Definition | df-plfl 35605* | Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux and Steven Nguyen, 21-Jun-2025.) |
⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠 ‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx), ⦋(𝑧 ∈ (Base‘𝑡) ↦ (℩𝑞 ∈ 𝑧 (𝑞(rem1p‘𝑟)𝑝) = 𝑞)) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) | ||
Theorem | rexxfr3d 35606* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by SN, 20-Jun-2025.) |
⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rexxfr3dALT 35607* | Longer proof of rexxfr3d 35606 using ax-11 2158 instead of ax-12 2178, without the disjoint variable condition 𝐴𝑥𝑦. (Contributed by SN, 19-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rspssbasd 35608 | The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025.) |
⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐺 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝐵) | ||
Theorem | ellcsrspsn 35609* | Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19219 and elrspsn 21273. (Contributed by SN, 19-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑈 = (𝑅 /s ∼ ) & ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | ||
Theorem | ply1divalg3 35610* | Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26198 to addition. (Contributed by SN, 20-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
Theorem | r1peuqusdeg1 35611* | Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26221. (Contributed by SN, 21-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐼 = ((RSpan‘𝑃)‘{𝐹}) & ⊢ 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼)) & ⊢ 𝑄 = (Base‘𝑇) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝑁) & ⊢ (𝜑 → 𝑍 ∈ 𝑄) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) | ||
Definition | df-sfl1 35612* |
Temporary construction for the splitting field of a polynomial. The
inputs are a field 𝑟 and a polynomial 𝑝 that we
want to split,
along with a tuple 𝑗 in the same format as the output.
The output
is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the splitting field
and 𝐹
is an injective homomorphism from the original field 𝑟.
The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈ ((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st ‘𝑡), (𝑓 ∘ (2nd ‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) | ||
Definition | df-sfl 35613* | Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the totally ordered splitting field and 𝐹 is an injective homomorphism from the original field 𝑟. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) | ||
Definition | df-psl 35614* | Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ ⦋(1st ‘𝑔) / 𝑒⦌⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾ (Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓))) | ||
Syntax | czr 35615 | Integral elements of a ring. |
class ZRing | ||
Syntax | cgf 35616 | Galois finite field. |
class GF | ||
Syntax | cgfo 35617 | Galois limit field. |
class GF∞ | ||
Syntax | ceqp 35618 | Equivalence relation for df-qp 35629. |
class ~Qp | ||
Syntax | crqp 35619 | Equivalence relation representatives for df-qp 35629. |
class /Qp | ||
Syntax | cqp 35620 | The set of 𝑝-adic rational numbers. |
class Qp | ||
Syntax | czp 35621 | The set of 𝑝-adic integers. (Not to be confused with czn 21536.) |
class Zp | ||
Syntax | cqpa 35622 | Algebraic completion of the 𝑝-adic rational numbers. |
class _Qp | ||
Syntax | ccp 35623 | Metric completion of _Qp. |
class Cp | ||
Definition | df-zrng 35624 | Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) | ||
Definition | df-gf 35625* | Define the Galois finite field of order 𝑝↑𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-gfoo 35626* | Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF∞ = (𝑝 ∈ ℙ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-eqp 35627* | Define an equivalence relation on ℤ-indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘 ≤ 𝑛𝑓(𝑘)(𝑝↑𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | ||
Definition | df-rqp 35628* | There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ ⦋{𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1))))))) | ||
Definition | df-qp 35629* | Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.) |
⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ, < )))))) | ||
Definition | df-zp 35630 | Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Zp = (ZRing ∘ Qp) | ||
Definition | df-qpa 35631* | Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝↑𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝↑𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ _Qp = (𝑝 ∈ ℙ ↦ ⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))}))) | ||
Definition | df-cp 35632 | Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Cp = ( cplMetSp ∘ _Qp) | ||
I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.) | ||
Theorem | problem1 35633 | Practice problem 1. Clues: 5p4e9 12451 3p2e5 12444 eqtri 2768 oveq1i 7458. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ ((3 + 2) + 4) = 9 | ||
Theorem | problem2 35634 | Practice problem 2. Clues: oveq12i 7460 adddiri 11303 add4i 11514 mulcli 11297 recni 11304 2re 12367 3eqtri 2772 10re 12777 5re 12380 1re 11290 4re 12377 eqcomi 2749 5p4e9 12451 oveq1i 7458 df-3 12357. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) | ||
Theorem | problem3 35635 | Practice problem 3. Clues: eqcomi 2749 eqtri 2768 subaddrii 11625 recni 11304 4re 12377 3re 12373 1re 11290 df-4 12358 addcomi 11481. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ (𝐴 + 3) = 4 ⇒ ⊢ 𝐴 = 1 | ||
Theorem | problem4 35636 | Practice problem 4. Clues: pm3.2i 470 eqcomi 2749 eqtri 2768 subaddrii 11625 recni 11304 7re 12386 6re 12383 ax-1cn 11242 df-7 12361 ax-mp 5 oveq1i 7458 3cn 12374 2cn 12368 df-3 12357 mullidi 11295 subdiri 11740 mp3an 1461 mulcli 11297 subadd23 11548 oveq2i 7459 oveq12i 7460 3t2e6 12459 mulcomi 11298 subcli 11612 biimpri 228 subadd2i 11624. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 3 & ⊢ ((3 · 𝐴) + (2 · 𝐵)) = 7 ⇒ ⊢ (𝐴 = 1 ∧ 𝐵 = 2) | ||
Theorem | problem5 35637 | Practice problem 5. Clues: 3brtr3i 5195 mpbi 230 breqtri 5191 ltaddsubi 11851 remulcli 11306 2re 12367 3re 12373 9re 12392 eqcomi 2749 mvlladdi 11554 3cn 6cn 12384 eqtr3i 2770 6p3e9 12453 addcomi 11481 ltdiv1ii 12224 6re 12383 nngt0i 12332 2nn 12366 divcan3i 12040 recni 11304 2cn 12368 2ne0 12397 mpbir 231 eqtri 2768 mulcomi 11298 3t2e6 12459 divmuli 12048. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℝ & ⊢ ((2 · 𝐴) + 3) < 9 ⇒ ⊢ 𝐴 < 3 | ||
Theorem | quad3 35638 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) |
⊢ 𝑋 ∈ ℂ & ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ⇒ ⊢ (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴))) | ||
Theorem | climuzcnv 35639* | Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) | ||
Theorem | sinccvglem 35640* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ∖ {0})) & ⊢ (𝜑 → 𝐹 ⇝ 0) & ⊢ 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) < 1) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ⇝ 1) | ||
Theorem | sinccvg 35641* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) | ||
Theorem | circum 35642* | The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ 𝐴 = ((2 · π) / 𝑛) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ 𝑃 ⇝ ((2 · π) · 𝑅) | ||
Theorem | elfzm12 35643 | Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) | ||
Theorem | nn0seqcvg 35644* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝐹:ℕ0⟶ℕ0 & ⊢ 𝑁 = (𝐹‘0) & ⊢ (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝐹‘𝑁) = 0 | ||
Theorem | lediv2aALT 35645 | Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
Theorem | abs2sqlei 35646 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqlti 35647 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqle 35648 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) | ||
Theorem | abs2sqlt 35649 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) | ||
Theorem | abs2difi 35650 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | abs2difabsi 35651 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | 2thALT 35652 | Alternate proof of 2th 264. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | orbi2iALT 35653 | Alternate proof of orbi2i 911. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) | ||
Theorem | pm3.48ALT 35654 | Alternate proof of pm3.48 964. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | ||
Theorem | 3jcadALT 35655 | Alternate proof of 3jcad 1129. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
Theorem | currybi 35656 | Biconditional version of Curry's paradox. If some proposition 𝜑 amounts to the self-referential statement "This very statement is equivalent to 𝜓", then 𝜓 is true. See bj-currypara 36526 in BJ's mathbox for the classical version. (Contributed by Adrian Ducourtial, 18-Mar-2025.) |
⊢ ((𝜑 ↔ (𝜑 ↔ 𝜓)) → 𝜓) | ||
Syntax | ccloneop 35657 | Syntax for the function of the class of operations on a set. |
class CloneOp | ||
Definition | df-cloneop 35658* | Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on 𝑎 to be a function on finite sequences of elements of 𝑎 (rather than tuples) with values in 𝑎. Following line 6 of [Szendrei] p. 11, the arity 𝑛 of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence 𝑛 is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) | ||
Syntax | cprj 35659 | Syntax for the function of projections on sets. |
class prj | ||
Definition | df-prj 35660* | Define the function that, for a set 𝑎, arity 𝑛, and index 𝑖, returns the 𝑖-th 𝑛-ary projection on 𝑎. This is the 𝑛-ary operation on 𝑎 that, for any sequence of 𝑛 elements of 𝑎, returns the element having index 𝑖. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) | ||
Syntax | csuppos 35661 | Syntax for the function of superpositions. |
class suppos | ||
Definition | df-suppos 35662* | Define the function that, when given an 𝑛-ary operation 𝑓 and 𝑛 many 𝑚-ary operations (𝑔‘∅), ..., (𝑔‘∪ 𝑛), returns the superposition of 𝑓 with the (𝑔‘𝑖), itself another 𝑚-ary operation on 𝑎. Given 𝑥 (a sequence of 𝑚 arguments in 𝑎), the superposition effectively applies each of the (𝑔‘𝑖) to 𝑥, then applies 𝑓 to the resulting sequence of 𝑛 function values. This can be seen as a generalized version of function composition; see paragraph 3 of [Szendrei] p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) | ||
Theorem | axextprim 35663 | ax-ext 2711 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) | ||
Theorem | axrepprim 35664 | ax-rep 5303 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧 ∈ 𝑥 → ¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧 ∈ 𝑥))) | ||
Theorem | axunprim 35665 | ax-un 7770 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpowprim 35666 | ax-pow 5383 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) | ||
Theorem | axregprim 35667 | ax-reg 9661 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axinfprim 35668 | ax-inf 9707 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ (𝑦 ∈ 𝑥 → ¬ ∀𝑦(𝑦 ∈ 𝑥 → ¬ ∀𝑧(𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥)))) | ||
Theorem | axacprim 35669 | ax-ac 10528 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) | ||
Theorem | untelirr 35670* | We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 35756). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | untuni 35671* | The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untsucf 35672* | If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | unt0 35673 | The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 | ||
Theorem | untint 35674* | If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | efrunt 35675* | If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untangtr 35676* | A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.) |
⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) | ||
Theorem | 3jaodd 35677 | Double deduction form of 3jaoi 1428. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) | ||
Theorem | 3orit 35678 | Closed form of 3ori 1424. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) | ||
Theorem | biimpexp 35679 | A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | ||
Theorem | nepss 35680 | Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.) |
⊢ (𝐴 ≠ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵)) | ||
Theorem | 3ccased 35681 | Triple disjunction form of ccased 1039. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝜑 → ((𝜒 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜎) → 𝜓)) ⇒ ⊢ (𝜑 → (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → 𝜓)) | ||
Theorem | dfso3 35682* | Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.) |
⊢ (𝑅 Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | brtpid1 35683 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 | ||
Theorem | brtpid2 35684 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 〈𝐴, 𝐵〉, 𝐷}𝐵 | ||
Theorem | brtpid3 35685 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{𝐶, 𝐷, 〈𝐴, 𝐵〉}𝐵 | ||
Theorem | iota5f 35686* | A method for computing iota. (Contributed by Scott Fenton, 13-Dec-2017.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (𝜓 ↔ 𝑥 = 𝐴)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → (℩𝑥𝜓) = 𝐴) | ||
Theorem | jath 35687 | Closed form of ja 186. Proved using the completeness script. (Proof modification is discouraged.) (Contributed by Scott Fenton, 13-Dec-2021.) |
⊢ ((¬ 𝜑 → 𝜒) → ((𝜓 → 𝜒) → ((𝜑 → 𝜓) → 𝜒))) | ||
Theorem | xpab 35688* | Cartesian product of two class abstractions. (Contributed by Scott Fenton, 19-Aug-2024.) |
⊢ ({𝑥 ∣ 𝜑} × {𝑦 ∣ 𝜓}) = {〈𝑥, 𝑦〉 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | nnuni 35689 | The union of a finite ordinal is a finite ordinal. (Contributed by Scott Fenton, 17-Oct-2024.) |
⊢ (𝐴 ∈ ω → ∪ 𝐴 ∈ ω) | ||
Theorem | sqdivzi 35690 | Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) | ||
Theorem | supfz 35691 | The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → sup((𝑀...𝑁), ℤ, < ) = 𝑁) | ||
Theorem | inffz 35692 | The infimum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by AV, 10-Oct-2021.) |
⊢ (𝑁 ∈ (ℤ≥‘𝑀) → inf((𝑀...𝑁), ℤ, < ) = 𝑀) | ||
Theorem | fz0n 35693 | The sequence (0...(𝑁 − 1)) is empty iff 𝑁 is zero. (Contributed by Scott Fenton, 16-May-2014.) |
⊢ (𝑁 ∈ ℕ0 → ((0...(𝑁 − 1)) = ∅ ↔ 𝑁 = 0)) | ||
Theorem | shftvalg 35694 | Value of a sequence shifted by 𝐴. (Contributed by Scott Fenton, 16-Dec-2017.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift 𝐴)‘𝐵) = (𝐹‘(𝐵 − 𝐴))) | ||
Theorem | divcnvlin 35695* | Limit of the ratio of two linear functions. (Contributed by Scott Fenton, 17-Dec-2017.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 + 𝐴) / (𝑘 + 𝐵))) ⇒ ⊢ (𝜑 → 𝐹 ⇝ 1) | ||
Theorem | climlec3 35696* | Comparison of a constant to the limit of a sequence. (Contributed by Scott Fenton, 5-Jan-2018.) |
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐹 ⇝ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ≤ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐵) | ||
Theorem | iexpire 35697 | i raised to itself is real. (Contributed by Scott Fenton, 13-Apr-2020.) |
⊢ (i↑𝑐i) ∈ ℝ | ||
Theorem | bcneg1 35698 | The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.) |
⊢ (𝑁 ∈ ℕ0 → (𝑁C-1) = 0) | ||
Theorem | bcm1nt 35699 | The proportion of one binomial coefficient to another with 𝑁 decreased by 1. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...(𝑁 − 1))) → (𝑁C𝐾) = (((𝑁 − 1)C𝐾) · (𝑁 / (𝑁 − 𝐾)))) | ||
Theorem | bcprod 35700* | A product identity for binomial coefficients. (Contributed by Scott Fenton, 23-Jun-2020.) |
⊢ (𝑁 ∈ ℕ → ∏𝑘 ∈ (1...(𝑁 − 1))((𝑁 − 1)C𝑘) = ∏𝑘 ∈ (1...(𝑁 − 1))(𝑘↑((2 · 𝑘) − 𝑁))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |