| Metamath
Proof Explorer Theorem List (p. 357 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elmpst 35601 | Property of being a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ↔ ((𝐷 ⊆ 𝑉 ∧ ◡𝐷 = 𝐷) ∧ (𝐻 ⊆ 𝐸 ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ 𝐸)) | ||
| Theorem | msrfval 35602* | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅 = (𝑠 ∈ 𝑃 ↦ ⦋(2nd ‘(1st ‘𝑠)) / ℎ⦌⦋(2nd ‘𝑠) / 𝑎⦌〈((1st ‘(1st ‘𝑠)) ∩ ⦋∪ (𝑉 “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉) | ||
| Theorem | msrval 35603 | Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝑅‘〈𝐷, 𝐻, 𝐴〉) = 〈(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴〉) | ||
| Theorem | mpstssv 35604 | A pre-statement is an ordered triple. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑃 ⊆ ((V × V) × V) | ||
| Theorem | mpst123 35605 | Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑃 → 𝑋 = 〈(1st ‘(1st ‘𝑋)), (2nd ‘(1st ‘𝑋)), (2nd ‘𝑋)〉) | ||
| Theorem | mpstrcl 35606 | The elements of a pre-statement are sets. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 → (𝐷 ∈ V ∧ 𝐻 ∈ V ∧ 𝐴 ∈ V)) | ||
| Theorem | msrf 35607 | The reduct of a pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ 𝑅:𝑃⟶𝑃 | ||
| Theorem | msrrcl 35608 | If 𝑋 and 𝑌 have the same reduct, then one is a pre-statement iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑅 = (mStRed‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑃 ↔ 𝑌 ∈ 𝑃)) | ||
| Theorem | mstaval 35609 | Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 = ran 𝑅 | ||
| Theorem | msrid 35610 | The reduct of a statement is itself. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑆 → (𝑅‘𝑋) = 𝑋) | ||
| Theorem | msrfo 35611 | The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑃 = (mPreSt‘𝑇) ⇒ ⊢ 𝑅:𝑃–onto→𝑆 | ||
| Theorem | mstapst 35612 | A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ 𝑆 ⊆ 𝑃 | ||
| Theorem | elmsta 35613 | Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑆 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐷 ⊆ (𝑍 × 𝑍))) | ||
| Theorem | ismfs 35614* | A formal system is a tuple 〈mCN, mVR, mType, mVT, mTC, mAx〉 such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ 𝑊 → (𝑇 ∈ mFS ↔ (((𝐶 ∩ 𝑉) = ∅ ∧ 𝑌:𝑉⟶𝐾) ∧ (𝐴 ⊆ 𝑆 ∧ ∀𝑣 ∈ 𝐹 ¬ (◡𝑌 “ {𝑣}) ∈ Fin)))) | ||
| Theorem | mfsdisj 35615 | The constants and variables of a formal system are disjoint. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐶 = (mCN‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝐶 ∩ 𝑉) = ∅) | ||
| Theorem | mtyf2 35616 | The type function maps variables to typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐾) | ||
| Theorem | mtyf 35617 | The type function maps variables to variable typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝑌:𝑉⟶𝐹) | ||
| Theorem | mvtss 35618 | The set of variable typecodes is a subset of all typecodes. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝐾 = (mTC‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐹 ⊆ 𝐾) | ||
| Theorem | maxsta 35619 | An axiom is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mStat‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐴 ⊆ 𝑆) | ||
| Theorem | mvtinf 35620 | Each variable typecode has infinitely many variables. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐹 = (mVT‘𝑇) & ⊢ 𝑌 = (mType‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝑋 ∈ 𝐹) → ¬ (◡𝑌 “ {𝑋}) ∈ Fin) | ||
| Theorem | msubff1 35621 | When restricted to complete mappings, the substitution-producing function is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1→(𝐸 ↑m 𝐸)) | ||
| Theorem | msubff1o 35622 | When restricted to complete mappings, the substitution-producing function is bijective to the set of all substitutions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝑅 = (mREx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → (𝑆 ↾ (𝑅 ↑m 𝑉)):(𝑅 ↑m 𝑉)–1-1-onto→ran 𝑆) | ||
| Theorem | mvhf 35623 | The function mapping variables to variable expressions is a function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉⟶𝐸) | ||
| Theorem | mvhf1 35624 | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝑇 ∈ mFS → 𝐻:𝑉–1-1→𝐸) | ||
| Theorem | msubvrs 35625* | The set of variables in a substitution is the union, indexed by the variables in the original expression, of the variables in the substitution to that variable. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ ((𝑇 ∈ mFS ∧ 𝐹 ∈ ran 𝑆 ∧ 𝑋 ∈ 𝐸) → (𝑉‘(𝐹‘𝑋)) = ∪ 𝑥 ∈ (𝑉‘𝑋)(𝑉‘(𝐹‘(𝐻‘𝑥)))) | ||
| Theorem | mclsrcl 35626 | Reverse closure for the closure function. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (𝐴 ∈ (𝐾𝐶𝐵) → (𝑇 ∈ V ∧ 𝐾 ⊆ 𝐷 ∧ 𝐵 ⊆ 𝐸)) | ||
| Theorem | mclsssvlem 35627* | Lemma for mclsssv 35629. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))} ⊆ 𝐸) | ||
| Theorem | mclsval 35628* | The function mapping variables to variable expressions is one-to-one. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝑆 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) = ∩ {𝑐 ∣ ((𝐵 ∪ ran 𝐻) ⊆ 𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 → ∀𝑠 ∈ ran 𝑆(((𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑉‘(𝑠‘(𝐻‘𝑥))) × (𝑉‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑐)))}) | ||
| Theorem | mclsssv 35629 | The closure of a set of expressions is a set of expressions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝐸) | ||
| Theorem | ssmclslem 35630 | Lemma for ssmcls 35632. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) ⇒ ⊢ (𝜑 → (𝐵 ∪ ran 𝐻) ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | vhmcls 35631 | All variable hypotheses are in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐻‘𝑋) ∈ (𝐾𝐶𝐵)) | ||
| Theorem | ssmcls 35632 | The original expressions are also in the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) ⇒ ⊢ (𝜑 → 𝐵 ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | ss2mcls 35633 | The closure is monotonic under subsets of the original set of expressions and the set of disjoint variable conditions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ (𝜑 → 𝑋 ⊆ 𝐾) & ⊢ (𝜑 → 𝑌 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐶𝑌) ⊆ (𝐾𝐶𝐵)) | ||
| Theorem | mclsax 35634* | The closure is closed under axiom application. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐴) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
| Theorem | mclsind 35635* | Induction theorem for closure: any other set 𝑄 closed under the axioms and the hypotheses contains all the elements of the closure. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐴 = (mAx‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 𝐵 ⊆ 𝑄) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝐻‘𝑣) ∈ 𝑄) & ⊢ ((𝜑 ∧ (〈𝑚, 𝑜, 𝑝〉 ∈ 𝐴 ∧ 𝑠 ∈ ran 𝐿 ∧ (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ 𝑄) ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → ((𝑊‘(𝑠‘(𝐻‘𝑥))) × (𝑊‘(𝑠‘(𝐻‘𝑦)))) ⊆ 𝐾)) → (𝑠‘𝑝) ∈ 𝑄) ⇒ ⊢ (𝜑 → (𝐾𝐶𝐵) ⊆ 𝑄) | ||
| Theorem | mppspstlem 35636* | Lemma for mppspst 35639. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} ⊆ 𝑃 | ||
| Theorem | mppsval 35637* | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ 𝐽 = {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ 𝑃 ∧ 𝑎 ∈ (𝑑𝐶ℎ))} | ||
| Theorem | elmpps 35638 | Definition of a provable pre-statement, essentially just a reorganization of the arguments of df-mcls . (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) ⇒ ⊢ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝐽 ↔ (〈𝐷, 𝐻, 𝐴〉 ∈ 𝑃 ∧ 𝐴 ∈ (𝐷𝐶𝐻))) | ||
| Theorem | mppspst 35639 | A provable pre-statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑃 = (mPreSt‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑃 | ||
| Theorem | mthmval 35640 | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. Unlike the difference between pre-statement and statement, this application of the reduct is not necessarily trivial: there are theorems that are not themselves provable but are provable once enough "dummy variables" are introduced. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝑈 = (◡𝑅 “ (𝑅 “ 𝐽)) | ||
| Theorem | elmthm 35641* | A theorem is a pre-statement, whose reduct is also the reduct of a provable pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ (𝑋 ∈ 𝑈 ↔ ∃𝑥 ∈ 𝐽 (𝑅‘𝑥) = (𝑅‘𝑋)) | ||
| Theorem | mthmi 35642 | A statement whose reduct is the reduct of a provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑋 ∈ 𝐽 ∧ (𝑅‘𝑋) = (𝑅‘𝑌)) → 𝑌 ∈ 𝑈) | ||
| Theorem | mthmsta 35643 | A theorem is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝑆 = (mPreSt‘𝑇) ⇒ ⊢ 𝑈 ⊆ 𝑆 | ||
| Theorem | mppsthm 35644 | A provable pre-statement is a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ 𝐽 ⊆ 𝑈 | ||
| Theorem | mthmblem 35645 | Lemma for mthmb 35646. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 → 𝑌 ∈ 𝑈)) | ||
| Theorem | mthmb 35646 | If two statements have the same reduct then one is a theorem iff the other is. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) ⇒ ⊢ ((𝑅‘𝑋) = (𝑅‘𝑌) → (𝑋 ∈ 𝑈 ↔ 𝑌 ∈ 𝑈)) | ||
| Theorem | mthmpps 35647 | Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many disjoint variable conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝑅 = (mStRed‘𝑇) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝑈 = (mThm‘𝑇) & ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝑉 = (mVars‘𝑇) & ⊢ 𝑍 = ∪ (𝑉 “ (𝐻 ∪ {𝐴})) & ⊢ 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⇒ ⊢ (𝑇 ∈ mFS → (〈𝐶, 𝐻, 𝐴〉 ∈ 𝑈 ↔ (〈𝑀, 𝐻, 𝐴〉 ∈ 𝐽 ∧ (𝑅‘〈𝑀, 𝐻, 𝐴〉) = (𝑅‘〈𝐶, 𝐻, 𝐴〉)))) | ||
| Theorem | mclsppslem 35648* | The closure is closed under application of provable pre-statements. (Compare mclsax 35634.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) & ⊢ (𝜑 → 〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑇)) & ⊢ (𝜑 → 𝑠 ∈ ran 𝐿) & ⊢ (𝜑 → (𝑠 “ (𝑜 ∪ ran 𝐻)) ⊆ (◡𝑆 “ (𝐾𝐶𝐵))) & ⊢ (𝜑 → ∀𝑧∀𝑤(𝑧𝑚𝑤 → ((𝑊‘(𝑠‘(𝐻‘𝑧))) × (𝑊‘(𝑠‘(𝐻‘𝑤)))) ⊆ 𝑀)) ⇒ ⊢ (𝜑 → (𝑠‘𝑝) ∈ (◡𝑆 “ (𝐾𝐶𝐵))) | ||
| Theorem | mclspps 35649* | The closure is closed under application of provable pre-statements. (Compare mclsax 35634.) This theorem is what justifies the treatment of theorems as "equivalent" to axioms once they have been proven: the composition of one theorem in the proof of another yields a theorem. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| ⊢ 𝐷 = (mDV‘𝑇) & ⊢ 𝐸 = (mEx‘𝑇) & ⊢ 𝐶 = (mCls‘𝑇) & ⊢ (𝜑 → 𝑇 ∈ mFS) & ⊢ (𝜑 → 𝐾 ⊆ 𝐷) & ⊢ (𝜑 → 𝐵 ⊆ 𝐸) & ⊢ 𝐽 = (mPPSt‘𝑇) & ⊢ 𝐿 = (mSubst‘𝑇) & ⊢ 𝑉 = (mVR‘𝑇) & ⊢ 𝐻 = (mVH‘𝑇) & ⊢ 𝑊 = (mVars‘𝑇) & ⊢ (𝜑 → 〈𝑀, 𝑂, 𝑃〉 ∈ 𝐽) & ⊢ (𝜑 → 𝑆 ∈ ran 𝐿) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑂) → (𝑆‘𝑥) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ 𝑣 ∈ 𝑉) → (𝑆‘(𝐻‘𝑣)) ∈ (𝐾𝐶𝐵)) & ⊢ ((𝜑 ∧ (𝑥𝑀𝑦 ∧ 𝑎 ∈ (𝑊‘(𝑆‘(𝐻‘𝑥))) ∧ 𝑏 ∈ (𝑊‘(𝑆‘(𝐻‘𝑦))))) → 𝑎𝐾𝑏) ⇒ ⊢ (𝜑 → (𝑆‘𝑃) ∈ (𝐾𝐶𝐵)) | ||
| Syntax | cm0s 35650 | Mapping expressions to statements. |
| class m0St | ||
| Syntax | cmsa 35651 | The set of syntax axioms. |
| class mSA | ||
| Syntax | cmwgfs 35652 | The set of weakly grammatical formal systems. |
| class mWGFS | ||
| Syntax | cmsy 35653 | The syntax typecode function. |
| class mSyn | ||
| Syntax | cmesy 35654 | The syntax typecode function for expressions. |
| class mESyn | ||
| Syntax | cmgfs 35655 | The set of grammatical formal systems. |
| class mGFS | ||
| Syntax | cmtree 35656 | The set of proof trees. |
| class mTree | ||
| Syntax | cmst 35657 | The set of syntax trees. |
| class mST | ||
| Syntax | cmsax 35658 | The indexing set for a syntax axiom. |
| class mSAX | ||
| Syntax | cmufs 35659 | The set of unambiguous formal systems. |
| class mUFS | ||
| Definition | df-m0s 35660 | Define a function mapping expressions to statements. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ m0St = (𝑎 ∈ V ↦ 〈∅, ∅, 𝑎〉) | ||
| Definition | df-msa 35661* | Define the set of syntax axioms. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡) ∧ Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) | ||
| Definition | df-mwgfs 35662* | Define the set of weakly grammatical formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} | ||
| Definition | df-msyn 35663 | Define the syntax typecode function. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSyn = Slot 6 | ||
| Definition | df-mesyn 35664* | Define the syntax typecode function for expressions. (Contributed by Mario Carneiro, 12-Jun-2023.) |
| ⊢ mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) | ||
| Definition | df-mgfs 35665* | Define the set of grammatical formal systems. (Contributed by Mario Carneiro, 12-Jun-2023.) |
| ⊢ mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} | ||
| Definition | df-mtree 35666* | Define the set of proof trees. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) | ||
| Definition | df-mst 35667 | Define the function mapping syntax expressions to syntax trees. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡)))) | ||
| Definition | df-msax 35668* | Define the indexing set for a syntax axiom's representation in a tree. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) | ||
| Definition | df-mufs 35669 | Define the set of unambiguous formal systems. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)} | ||
| Syntax | cmuv 35670 | The universe of a model. |
| class mUV | ||
| Syntax | cmvl 35671 | The set of valuations. |
| class mVL | ||
| Syntax | cmvsb 35672 | Substitution for a valuation. |
| class mVSubst | ||
| Syntax | cmfsh 35673 | The freshness relation of a model. |
| class mFresh | ||
| Syntax | cmfr 35674 | The set of freshness relations. |
| class mFRel | ||
| Syntax | cmevl 35675 | The evaluation function of a model. |
| class mEval | ||
| Syntax | cmdl 35676 | The set of models. |
| class mMdl | ||
| Syntax | cusyn 35677 | The syntax function applied to elements of the model. |
| class mUSyn | ||
| Syntax | cgmdl 35678 | The set of models in a grammatical formal system. |
| class mGMdl | ||
| Syntax | cmitp 35679 | The interpretation function of the model. |
| class mItp | ||
| Syntax | cmfitp 35680 | The evaluation function derived from the interpretation. |
| class mFromItp | ||
| Definition | df-muv 35681 | Define the universe of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mUV = Slot 7 | ||
| Definition | df-mfsh 35682 | Define the freshness relation of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFresh = Slot ;19 | ||
| Definition | df-mevl 35683 | Define the evaluation function of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEval = Slot ;20 | ||
| Definition | df-mvl 35684* | Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) | ||
| Definition | df-mvsb 35685* | Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) | ||
| Definition | df-mfrel 35686* | Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) | ||
| Definition | df-mdl 35687* | Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} | ||
| Definition | df-musyn 35688* | Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) | ||
| Definition | df-gmdl 35689* | Define the set of models of a grammatical formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))} | ||
| Definition | df-mitp 35690* | Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) | ||
| Definition | df-mfitp 35691* | Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))))) | ||
| Syntax | ccpms 35692 | Completion of a metric space. |
| class cplMetSp | ||
| Syntax | chlb 35693 | Embeddings for a direct limit. |
| class HomLimB | ||
| Syntax | chlim 35694 | Direct limit structure. |
| class HomLim | ||
| Syntax | cpfl 35695 | Polynomial extension field. |
| class polyFld | ||
| Syntax | csf1 35696 | Splitting field for a single polynomial (auxiliary). |
| class splitFld1 | ||
| Syntax | csf 35697 | Splitting field for a finite set of polynomials. |
| class splitFld | ||
| Syntax | cpsl 35698 | Splitting field for a sequence of polynomials. |
| class polySplitLim | ||
| Definition | df-cplmet 35699* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
| Definition | df-homlimb 35700* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |