| Metamath
Proof Explorer Theorem List (p. 357 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | cmitp 35601 | The interpretation function of the model. |
| class mItp | ||
| Syntax | cmfitp 35602 | The evaluation function derived from the interpretation. |
| class mFromItp | ||
| Definition | df-muv 35603 | Define the universe of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mUV = Slot 7 | ||
| Definition | df-mfsh 35604 | Define the freshness relation of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFresh = Slot ;19 | ||
| Definition | df-mevl 35605 | Define the evaluation function of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mEval = Slot ;20 | ||
| Definition | df-mvl 35606* | Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) | ||
| Definition | df-mvsb 35607* | Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) | ||
| Definition | df-mfrel 35608* | Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) | ||
| Definition | df-mdl 35609* | Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} | ||
| Definition | df-musyn 35610* | Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) | ||
| Definition | df-gmdl 35611* | Define the set of models of a grammatical formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))} | ||
| Definition | df-mitp 35612* | Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) | ||
| Definition | df-mfitp 35613* | Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
| ⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))))) | ||
| Syntax | ccpms 35614 | Completion of a metric space. |
| class cplMetSp | ||
| Syntax | chlb 35615 | Embeddings for a direct limit. |
| class HomLimB | ||
| Syntax | chlim 35616 | Direct limit structure. |
| class HomLim | ||
| Syntax | cpfl 35617 | Polynomial extension field. |
| class polyFld | ||
| Syntax | csf1 35618 | Splitting field for a single polynomial (auxiliary). |
| class splitFld1 | ||
| Syntax | csf 35619 | Splitting field for a finite set of polynomials. |
| class splitFld | ||
| Syntax | cpsl 35620 | Splitting field for a sequence of polynomials. |
| class polySplitLim | ||
| Definition | df-cplmet 35621* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
| Definition | df-homlimb 35622* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
| Definition | df-homlim 35623* | The input to this function is a sequence (on ℕ) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB ‘𝑓) / 𝑒⦌⦋(1st ‘𝑒) / 𝑣⦌⦋(2nd ‘𝑒) / 𝑔⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉, 〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪ {〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx), ∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) | ||
| Definition | df-plfl 35624* | Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux and Steven Nguyen, 21-Jun-2025.) |
| ⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠 ‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx), ⦋(𝑧 ∈ (Base‘𝑡) ↦ (℩𝑞 ∈ 𝑧 (𝑞(rem1p‘𝑟)𝑝) = 𝑞)) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) | ||
| Theorem | rexxfr3d 35625* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by SN, 20-Jun-2025.) |
| ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | rexxfr3dALT 35626* | Longer proof of rexxfr3d 35625 using ax-11 2158 instead of ax-12 2178, without the disjoint variable condition 𝐴𝑥𝑦. (Contributed by SN, 19-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
| Theorem | rspssbasd 35627 | The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025.) |
| ⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐺 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝐵) | ||
| Theorem | ellcsrspsn 35628* | Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19111 and elrspsn 21150. (Contributed by SN, 19-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑈 = (𝑅 /s ∼ ) & ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | ||
| Theorem | ply1divalg3 35629* | Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26044 to addition. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
| Theorem | r1peuqusdeg1 35630* | Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26067. (Contributed by SN, 21-Jun-2025.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐼 = ((RSpan‘𝑃)‘{𝐹}) & ⊢ 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼)) & ⊢ 𝑄 = (Base‘𝑇) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝑁) & ⊢ (𝜑 → 𝑍 ∈ 𝑄) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) | ||
| Definition | df-sfl1 35631* |
Temporary construction for the splitting field of a polynomial. The
inputs are a field 𝑟 and a polynomial 𝑝 that we
want to split,
along with a tuple 𝑗 in the same format as the output.
The output
is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the splitting field
and 𝐹
is an injective homomorphism from the original field 𝑟.
The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈ ((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st ‘𝑡), (𝑓 ∘ (2nd ‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) | ||
| Definition | df-sfl 35632* | Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the totally ordered splitting field and 𝐹 is an injective homomorphism from the original field 𝑟. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) | ||
| Definition | df-psl 35633* | Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ ⦋(1st ‘𝑔) / 𝑒⦌⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾ (Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓))) | ||
| Syntax | czr 35634 | Integral elements of a ring. |
| class ZRing | ||
| Syntax | cgf 35635 | Galois finite field. |
| class GF | ||
| Syntax | cgfo 35636 | Galois limit field. |
| class GF∞ | ||
| Syntax | ceqp 35637 | Equivalence relation for df-qp 35648. |
| class ~Qp | ||
| Syntax | crqp 35638 | Equivalence relation representatives for df-qp 35648. |
| class /Qp | ||
| Syntax | cqp 35639 | The set of 𝑝-adic rational numbers. |
| class Qp | ||
| Syntax | czp 35640 | The set of 𝑝-adic integers. (Not to be confused with czn 21412.) |
| class Zp | ||
| Syntax | cqpa 35641 | Algebraic completion of the 𝑝-adic rational numbers. |
| class _Qp | ||
| Syntax | ccp 35642 | Metric completion of _Qp. |
| class Cp | ||
| Definition | df-zrng 35643 | Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) | ||
| Definition | df-gf 35644* | Define the Galois finite field of order 𝑝↑𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
| Definition | df-gfoo 35645* | Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ GF∞ = (𝑝 ∈ ℙ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
| Definition | df-eqp 35646* | Define an equivalence relation on ℤ-indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘 ≤ 𝑛𝑓(𝑘)(𝑝↑𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | ||
| Definition | df-rqp 35647* | There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ ⦋{𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1))))))) | ||
| Definition | df-qp 35648* | Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.) |
| ⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ, < )))))) | ||
| Definition | df-zp 35649 | Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ Zp = (ZRing ∘ Qp) | ||
| Definition | df-qpa 35650* | Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝↑𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝↑𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ _Qp = (𝑝 ∈ ℙ ↦ ⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))}))) | ||
| Definition | df-cp 35651 | Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ Cp = ( cplMetSp ∘ _Qp) | ||
I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.) | ||
| Theorem | problem1 35652 | Practice problem 1. Clues: 5p4e9 12339 3p2e5 12332 eqtri 2752 oveq1i 7397. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ ((3 + 2) + 4) = 9 | ||
| Theorem | problem2 35653 | Practice problem 2. Clues: oveq12i 7399 adddiri 11187 add4i 11399 mulcli 11181 recni 11188 2re 12260 3eqtri 2756 10re 12668 5re 12273 1re 11174 4re 12270 eqcomi 2738 5p4e9 12339 oveq1i 7397 df-3 12250. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
| ⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) | ||
| Theorem | problem3 35654 | Practice problem 3. Clues: eqcomi 2738 eqtri 2752 subaddrii 11511 recni 11188 4re 12270 3re 12266 1re 11174 df-4 12251 addcomi 11365. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ (𝐴 + 3) = 4 ⇒ ⊢ 𝐴 = 1 | ||
| Theorem | problem4 35655 | Practice problem 4. Clues: pm3.2i 470 eqcomi 2738 eqtri 2752 subaddrii 11511 recni 11188 7re 12279 6re 12276 ax-1cn 11126 df-7 12254 ax-mp 5 oveq1i 7397 3cn 12267 2cn 12261 df-3 12250 mullidi 11179 subdiri 11628 mp3an 1463 mulcli 11181 subadd23 11433 oveq2i 7398 oveq12i 7399 3t2e6 12347 mulcomi 11182 subcli 11498 biimpri 228 subadd2i 11510. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 3 & ⊢ ((3 · 𝐴) + (2 · 𝐵)) = 7 ⇒ ⊢ (𝐴 = 1 ∧ 𝐵 = 2) | ||
| Theorem | problem5 35656 | Practice problem 5. Clues: 3brtr3i 5136 mpbi 230 breqtri 5132 ltaddsubi 11739 remulcli 11190 2re 12260 3re 12266 9re 12285 eqcomi 2738 mvlladdi 11440 3cn 6cn 12277 eqtr3i 2754 6p3e9 12341 addcomi 11365 ltdiv1ii 12112 6re 12276 nngt0i 12225 2nn 12259 divcan3i 11928 recni 11188 2cn 12261 2ne0 12290 mpbir 231 eqtri 2752 mulcomi 11182 3t2e6 12347 divmuli 11936. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ ((2 · 𝐴) + 3) < 9 ⇒ ⊢ 𝐴 < 3 | ||
| Theorem | quad3 35657 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) |
| ⊢ 𝑋 ∈ ℂ & ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ⇒ ⊢ (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴))) | ||
| Theorem | climuzcnv 35658* | Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
| ⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) | ||
| Theorem | sinccvglem 35659* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.) |
| ⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ∖ {0})) & ⊢ (𝜑 → 𝐹 ⇝ 0) & ⊢ 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) < 1) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ⇝ 1) | ||
| Theorem | sinccvg 35660* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| ⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) | ||
| Theorem | circum 35661* | The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
| ⊢ 𝐴 = ((2 · π) / 𝑛) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ 𝑃 ⇝ ((2 · π) · 𝑅) | ||
| Theorem | elfzm12 35662 | Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
| ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) | ||
| Theorem | nn0seqcvg 35663* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ 𝐹:ℕ0⟶ℕ0 & ⊢ 𝑁 = (𝐹‘0) & ⊢ (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝐹‘𝑁) = 0 | ||
| Theorem | lediv2aALT 35664 | Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
| Theorem | abs2sqlei 35665 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) | ||
| Theorem | abs2sqlti 35666 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) | ||
| Theorem | abs2sqle 35667 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) | ||
| Theorem | abs2sqlt 35668 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) | ||
| Theorem | abs2difi 35669 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) | ||
| Theorem | abs2difabsi 35670 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) | ||
| Theorem | 2thALT 35671 | Alternate proof of 2th 264. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
| Theorem | orbi2iALT 35672 | Alternate proof of orbi2i 912. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) | ||
| Theorem | pm3.48ALT 35673 | Alternate proof of pm3.48 965. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | ||
| Theorem | 3jcadALT 35674 | Alternate proof of 3jcad 1129. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
| Theorem | currybi 35675 | Biconditional version of Curry's paradox. If some proposition 𝜑 amounts to the self-referential statement "This very statement is equivalent to 𝜓", then 𝜓 is true. See bj-currypara 36548 in BJ's mathbox for the classical version. (Contributed by Adrian Ducourtial, 18-Mar-2025.) |
| ⊢ ((𝜑 ↔ (𝜑 ↔ 𝜓)) → 𝜓) | ||
| Theorem | antnest 35676 | Suppose 𝜑, 𝜓 are distinct atomic propositional formulas, and let Γ be the smallest class of formulas for which ⊤ ∈ Γ and (𝜒 → 𝜑), (𝜒 → 𝜓) ∈ Γ for 𝜒 ∈ Γ. The present theorem is then an element of Γ, and the implications occurring in the theorem are in one-to-one correspondence with the formulas in Γ up to logical equivalence. In particular, the theorem itself is equivalent to ⊤ ∈ Γ. (Contributed by Adrian Ducourtial, 2-Oct-2025.) |
| ⊢ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓) | ||
| Theorem | antnestlaw3lem 35677 | Lemma for antnestlaw3 35680. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ (¬ (((𝜑 → 𝜓) → 𝜒) → 𝜒) → ¬ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | ||
| Theorem | antnestlaw1 35678 | A law of nested antecedents. The converse direction is a subschema of pm2.27 42. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜓) ↔ (𝜑 → 𝜓)) | ||
| Theorem | antnestlaw2 35679 | A law of nested antecedents. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜓) → 𝜒) ↔ (((𝜑 → 𝜒) → 𝜓) → 𝜒)) | ||
| Theorem | antnestlaw3 35680 | A law of nested antecedents. Compare with looinv 203. (Contributed by Adrian Ducourtial, 5-Dec-2025.) |
| ⊢ ((((𝜑 → 𝜓) → 𝜒) → 𝜒) ↔ (((𝜑 → 𝜒) → 𝜓) → 𝜓)) | ||
| Theorem | antnestALT 35681 | Alternative proof of antnest 35676 from the valid schema ((((⊤ → 𝜑) → 𝜑) → 𝜓) → 𝜓) using laws of nested antecedents. Our proof uses only the laws antnestlaw1 35678 and antnestlaw3 35680. (Contributed by Adrian Ducourtial, 5-Dec-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓) | ||
| Syntax | ccloneop 35682 | Syntax for the function of the class of operations on a set. |
| class CloneOp | ||
| Definition | df-cloneop 35683* | Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on 𝑎 to be a function on finite sequences of elements of 𝑎 (rather than tuples) with values in 𝑎. Following line 6 of [Szendrei] p. 11, the arity 𝑛 of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence 𝑛 is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) | ||
| Syntax | cprj 35684 | Syntax for the function of projections on sets. |
| class prj | ||
| Definition | df-prj 35685* | Define the function that, for a set 𝑎, arity 𝑛, and index 𝑖, returns the 𝑖-th 𝑛-ary projection on 𝑎. This is the 𝑛-ary operation on 𝑎 that, for any sequence of 𝑛 elements of 𝑎, returns the element having index 𝑖. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) | ||
| Syntax | csuppos 35686 | Syntax for the function of superpositions. |
| class suppos | ||
| Definition | df-suppos 35687* | Define the function that, when given an 𝑛-ary operation 𝑓 and 𝑛 many 𝑚-ary operations (𝑔‘∅), ..., (𝑔‘∪ 𝑛), returns the superposition of 𝑓 with the (𝑔‘𝑖), itself another 𝑚-ary operation on 𝑎. Given 𝑥 (a sequence of 𝑚 arguments in 𝑎), the superposition effectively applies each of the (𝑔‘𝑖) to 𝑥, then applies 𝑓 to the resulting sequence of 𝑛 function values. This can be seen as a generalized version of function composition; see paragraph 3 of [Szendrei] p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
| ⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) | ||
| Theorem | axextprim 35688 | ax-ext 2701 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) | ||
| Theorem | axrepprim 35689 | ax-rep 5234 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧 ∈ 𝑥 → ¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧 ∈ 𝑥))) | ||
| Theorem | axunprim 35690 | ax-un 7711 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
| Theorem | axpowprim 35691 | ax-pow 5320 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) | ||
| Theorem | axregprim 35692 | ax-reg 9545 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
| Theorem | axinfprim 35693 | ax-inf 9591 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ (𝑦 ∈ 𝑥 → ¬ ∀𝑦(𝑦 ∈ 𝑥 → ¬ ∀𝑧(𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥)))) | ||
| Theorem | axacprim 35694 | ax-ac 10412 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.) |
| ⊢ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) | ||
| Theorem | untelirr 35695* | We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 35780). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | ||
| Theorem | untuni 35696* | The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
| ⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) | ||
| Theorem | untsucf 35697* | If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
| Theorem | unt0 35698 | The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| ⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 | ||
| Theorem | untint 35699* | If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
| Theorem | efrunt 35700* | If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
| ⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |