![]() |
Metamath
Proof Explorer Theorem List (p. 357 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-mfsh 35601 | Define the freshness relation of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFresh = Slot ;19 | ||
Definition | df-mevl 35602 | Define the evaluation function of a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mEval = Slot ;20 | ||
Definition | df-mvl 35603* | Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) | ||
Definition | df-mvsb 35604* | Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) | ||
Definition | df-mfrel 35605* | Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) | ||
Definition | df-mdl 35606* | Define the set of models of a formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} | ||
Definition | df-musyn 35607* | Define the syntax typecode function for the model universe. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st ‘𝑣)), (2nd ‘𝑣)〉)) | ||
Definition | df-gmdl 35608* | Define the set of models of a grammatical formal system. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))} | ||
Definition | df-mitp 35609* | Define the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) | ||
Definition | df-mfitp 35610* | Define a function that produces the evaluation function, given the interpretation function for a model. (Contributed by Mario Carneiro, 14-Jul-2016.) |
⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st ‘𝑒)})))))) | ||
Syntax | ccpms 35611 | Completion of a metric space. |
class cplMetSp | ||
Syntax | chlb 35612 | Embeddings for a direct limit. |
class HomLimB | ||
Syntax | chlim 35613 | Direct limit structure. |
class HomLim | ||
Syntax | cpfl 35614 | Polynomial extension field. |
class polyFld | ||
Syntax | csf1 35615 | Splitting field for a single polynomial (auxiliary). |
class splitFld1 | ||
Syntax | csf 35616 | Splitting field for a finite set of polynomials. |
class splitFld | ||
Syntax | cpsl 35617 | Splitting field for a sequence of polynomials. |
class polySplitLim | ||
Definition | df-cplmet 35618* | A function which completes the given metric space. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx), {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) | ||
Definition | df-homlimb 35619* | The input to this function is a sequence (on ℕ) of homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined. This function returns the pair 〈𝑆, 𝐺〉 where 𝑆 is the terminal object and 𝐺 is a sequence of functions such that 𝐺(𝑛):𝑅(𝑛)⟶𝑆 and 𝐺(𝑛) = 𝐹(𝑛) ∘ 𝐺(𝑛 + 1). (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd ‘𝑥))〉) ⊆ 𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) | ||
Definition | df-homlim 35620* | The input to this function is a sequence (on ℕ) of structures 𝑅(𝑛) and homomorphisms 𝐹(𝑛):𝑅(𝑛)⟶𝑅(𝑛 + 1). The resulting structure is the direct limit of the direct system so defined, and maintains any structures that were present in the original objects. TODO: generalize to directed sets? (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB ‘𝑓) / 𝑒⦌⦋(1st ‘𝑒) / 𝑣⦌⦋(2nd ‘𝑒) / 𝑔⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉, 〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪ {〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx), ∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) | ||
Definition | df-plfl 35621* | Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux and Steven Nguyen, 21-Jun-2025.) |
⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ ⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠 ‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx), ⦋(𝑧 ∈ (Base‘𝑡) ↦ (℩𝑞 ∈ 𝑧 (𝑞(rem1p‘𝑟)𝑝) = 𝑞)) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) | ||
Theorem | rexxfr3d 35622* | Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by SN, 20-Jun-2025.) |
⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rexxfr3dALT 35623* | Longer proof of rexxfr3d 35622 using ax-11 2154 instead of ax-12 2174, without the disjoint variable condition 𝐴𝑥𝑦. (Contributed by SN, 19-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | ||
Theorem | rspssbasd 35624 | The span of a set of ring elements is a set of ring elements. (Contributed by SN, 19-Jun-2025.) |
⊢ 𝐾 = (RSpan‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐺 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐾‘𝐺) ⊆ 𝐵) | ||
Theorem | ellcsrspsn 35625* | Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19209 and elrspsn 21267. (Contributed by SN, 19-Jun-2025.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ ∼ = (𝑅 ~QG 𝐼) & ⊢ 𝑈 = (𝑅 /s ∼ ) & ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | ||
Theorem | ply1divalg3 35626* | Uniqueness of polynomial remainder: convert the subtraction in ply1divalg2 26192 to addition. (Contributed by SN, 20-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ + = (+g‘𝑃) & ⊢ ∙ = (.r‘𝑃) & ⊢ 𝐶 = (Unic1p‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐶) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝐵 (𝐷‘(𝐹 + (𝑞 ∙ 𝐺))) < (𝐷‘𝐺)) | ||
Theorem | r1peuqusdeg1 35627* | Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26215. (Contributed by SN, 21-Jun-2025.) |
⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝐼 = ((RSpan‘𝑃)‘{𝐹}) & ⊢ 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼)) & ⊢ 𝑄 = (Base‘𝑇) & ⊢ 𝑁 = (Unic1p‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Domn) & ⊢ (𝜑 → 𝐹 ∈ 𝑁) & ⊢ (𝜑 → 𝑍 ∈ 𝑄) ⇒ ⊢ (𝜑 → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) | ||
Definition | df-sfl1 35628* |
Temporary construction for the splitting field of a polynomial. The
inputs are a field 𝑟 and a polynomial 𝑝 that we
want to split,
along with a tuple 𝑗 in the same format as the output.
The output
is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the splitting field
and 𝐹
is an injective homomorphism from the original field 𝑟.
The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈ ((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st ‘𝑡), (𝑓 ∘ (2nd ‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) | ||
Definition | df-sfl 35629* | Define the splitting field of a finite collection of polynomials, given a total ordered base field. The output is a tuple 〈𝑆, 𝐹〉 where 𝑆 is the totally ordered splitting field and 𝐹 is an injective homomorphism from the original field 𝑟. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) | ||
Definition | df-psl 35630* | Define the direct limit of an increasing sequence of fields produced by pasting together the splitting fields for each sequence of polynomials. That is, given a ring 𝑟, a strict order on 𝑟, and a sequence 𝑝:ℕ⟶(𝒫 𝑟 ∩ Fin) of finite sets of polynomials to split, we construct the direct limit system of field extensions by splitting one set at a time and passing the resulting construction to HomLim. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ ⦋(1st ‘𝑔) / 𝑒⦌⦋(1st ‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾ (Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘ (𝑓 shift 1)) HomLim (2nd ∘ 𝑓))) | ||
Syntax | czr 35631 | Integral elements of a ring. |
class ZRing | ||
Syntax | cgf 35632 | Galois finite field. |
class GF | ||
Syntax | cgfo 35633 | Galois limit field. |
class GF∞ | ||
Syntax | ceqp 35634 | Equivalence relation for df-qp 35645. |
class ~Qp | ||
Syntax | crqp 35635 | Equivalence relation representatives for df-qp 35645. |
class /Qp | ||
Syntax | cqp 35636 | The set of 𝑝-adic rational numbers. |
class Qp | ||
Syntax | czp 35637 | The set of 𝑝-adic integers. (Not to be confused with czn 21530.) |
class Zp | ||
Syntax | cqpa 35638 | Algebraic completion of the 𝑝-adic rational numbers. |
class _Qp | ||
Syntax | ccp 35639 | Metric completion of _Qp. |
class Cp | ||
Definition | df-zrng 35640 | Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) | ||
Definition | df-gf 35641* | Define the Galois finite field of order 𝑝↑𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-gfoo 35642* | Define the Galois field of order 𝑝↑+∞, as a direct limit of the Galois finite fields. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ GF∞ = (𝑝 ∈ ℙ ↦ ⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) | ||
Definition | df-eqp 35643* | Define an equivalence relation on ℤ-indexed sequences of integers such that two sequences are equivalent iff the difference is equivalent to zero, and a sequence is equivalent to zero iff the sum Σ𝑘 ≤ 𝑛𝑓(𝑘)(𝑝↑𝑘) is a multiple of 𝑝↑(𝑛 + 1) for every 𝑛. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) | ||
Definition | df-rqp 35644* | There is a unique element of (ℤ ↑m (0...(𝑝 − 1))) ~Qp -equivalent to any element of (ℤ ↑m ℤ), if the sequences are zero for sufficiently large negative values; this function selects that element. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ ⦋{𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1))))))) | ||
Definition | df-qp 35645* | Define the 𝑝-adic completion of the rational numbers, as a normed field structure with a total order (that is not compatible with the operations). (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by AV, 10-Oct-2021.) |
⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ, < )))))) | ||
Definition | df-zp 35646 | Define the 𝑝-adic integers, as a subset of the 𝑝-adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Zp = (ZRing ∘ Qp) | ||
Definition | df-qpa 35647* | Define the completion of the 𝑝-adic rationals. Here we simply define it as the splitting field of a dense sequence of polynomials (using as the 𝑛-th set the collection of polynomials with degree less than 𝑛 and with coefficients < (𝑝↑𝑛)). Krasner's lemma will then show that all monic polynomials have splitting fields isomorphic to a sufficiently close Eisenstein polynomial from the list, and unramified extensions are generated by the polynomial 𝑥↑(𝑝↑𝑛) − 𝑥, which is in the list. Thus, every finite extension of Qp is a subfield of this field extension, so it is algebraically closed. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ _Qp = (𝑝 ∈ ℙ ↦ ⦋(Qp‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1‘𝑟) ∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))}))) | ||
Definition | df-cp 35648 | Define the metric completion of the algebraic completion of the 𝑝 -adic rationals. (Contributed by Mario Carneiro, 2-Dec-2014.) |
⊢ Cp = ( cplMetSp ∘ _Qp) | ||
I hope someone will enjoy solving (proving) the simple equations, inequalities, and calculations from this mathbox. I have proved these problems (theorems) using the Milpgame proof assistant. (It can be downloaded from https://us.metamath.org/other/milpgame/milpgame.html.) | ||
Theorem | problem1 35649 | Practice problem 1. Clues: 5p4e9 12421 3p2e5 12414 eqtri 2762 oveq1i 7440. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ ((3 + 2) + 4) = 9 | ||
Theorem | problem2 35650 | Practice problem 2. Clues: oveq12i 7442 adddiri 11271 add4i 11483 mulcli 11265 recni 11272 2re 12337 3eqtri 2766 10re 12749 5re 12350 1re 11258 4re 12347 eqcomi 2743 5p4e9 12421 oveq1i 7440 df-3 12327. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Revised by AV, 9-Sep-2021.) (Proof modification is discouraged.) |
⊢ (((2 · ;10) + 5) + ((1 · ;10) + 4)) = ((3 · ;10) + 9) | ||
Theorem | problem3 35651 | Practice problem 3. Clues: eqcomi 2743 eqtri 2762 subaddrii 11595 recni 11272 4re 12347 3re 12343 1re 11258 df-4 12328 addcomi 11449. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ (𝐴 + 3) = 4 ⇒ ⊢ 𝐴 = 1 | ||
Theorem | problem4 35652 | Practice problem 4. Clues: pm3.2i 470 eqcomi 2743 eqtri 2762 subaddrii 11595 recni 11272 7re 12356 6re 12353 ax-1cn 11210 df-7 12331 ax-mp 5 oveq1i 7440 3cn 12344 2cn 12338 df-3 12327 mullidi 11263 subdiri 11710 mp3an 1460 mulcli 11265 subadd23 11517 oveq2i 7441 oveq12i 7442 3t2e6 12429 mulcomi 11266 subcli 11582 biimpri 228 subadd2i 11594. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 3 & ⊢ ((3 · 𝐴) + (2 · 𝐵)) = 7 ⇒ ⊢ (𝐴 = 1 ∧ 𝐵 = 2) | ||
Theorem | problem5 35653 | Practice problem 5. Clues: 3brtr3i 5176 mpbi 230 breqtri 5172 ltaddsubi 11821 remulcli 11274 2re 12337 3re 12343 9re 12362 eqcomi 2743 mvlladdi 11524 3cn 6cn 12354 eqtr3i 2764 6p3e9 12423 addcomi 11449 ltdiv1ii 12194 6re 12353 nngt0i 12302 2nn 12336 divcan3i 12010 recni 11272 2cn 12338 2ne0 12367 mpbir 231 eqtri 2762 mulcomi 11266 3t2e6 12429 divmuli 12018. (Contributed by Filip Cernatescu, 16-Mar-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ ℝ & ⊢ ((2 · 𝐴) + 3) < 9 ⇒ ⊢ 𝐴 < 3 | ||
Theorem | quad3 35654 | Variant of quadratic equation with discriminant expanded. (Contributed by Filip Cernatescu, 19-Oct-2019.) |
⊢ 𝑋 ∈ ℂ & ⊢ 𝐴 ∈ ℂ & ⊢ 𝐴 ≠ 0 & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ ((𝐴 · (𝑋↑2)) + ((𝐵 · 𝑋) + 𝐶)) = 0 ⇒ ⊢ (𝑋 = ((-𝐵 + (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴)) ∨ 𝑋 = ((-𝐵 − (√‘((𝐵↑2) − (4 · (𝐴 · 𝐶))))) / (2 · 𝐴))) | ||
Theorem | climuzcnv 35655* | Utility lemma to convert between 𝑚 ≤ 𝑘 and 𝑘 ∈ (ℤ≥‘𝑚) in limit theorems. (Contributed by Paul Chapman, 10-Nov-2012.) |
⊢ (𝑚 ∈ ℕ → ((𝑘 ∈ (ℤ≥‘𝑚) → 𝜑) ↔ (𝑘 ∈ ℕ → (𝑚 ≤ 𝑘 → 𝜑)))) | ||
Theorem | sinccvglem 35656* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Revised by Mario Carneiro, 21-May-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶(ℝ ∖ {0})) & ⊢ (𝜑 → 𝐹 ⇝ 0) & ⊢ 𝐺 = (𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) & ⊢ 𝐻 = (𝑥 ∈ ℂ ↦ (1 − ((𝑥↑2) / 3))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) < 1) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ⇝ 1) | ||
Theorem | sinccvg 35657* | ((sin‘𝑥) / 𝑥) ⇝ 1 as (real) 𝑥 ⇝ 0. (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ ((𝐹:ℕ⟶(ℝ ∖ {0}) ∧ 𝐹 ⇝ 0) → ((𝑥 ∈ (ℝ ∖ {0}) ↦ ((sin‘𝑥) / 𝑥)) ∘ 𝐹) ⇝ 1) | ||
Theorem | circum 35658* | The circumference of a circle of radius 𝑅, defined as the limit as 𝑛 ⇝ +∞ of the perimeter of an inscribed n-sided isogons, is ((2 · π) · 𝑅). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.) |
⊢ 𝐴 = ((2 · π) / 𝑛) & ⊢ 𝑃 = (𝑛 ∈ ℕ ↦ ((2 · 𝑛) · (𝑅 · (sin‘(𝐴 / 2))))) & ⊢ 𝑅 ∈ ℝ ⇒ ⊢ 𝑃 ⇝ ((2 · π) · 𝑅) | ||
Theorem | elfzm12 35659 | Membership in a curtailed finite sequence of integers. (Contributed by Paul Chapman, 17-Nov-2012.) |
⊢ (𝑁 ∈ ℕ → (𝑀 ∈ (1...(𝑁 − 1)) → 𝑀 ∈ (1...𝑁))) | ||
Theorem | nn0seqcvg 35660* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Inference version. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ 𝐹:ℕ0⟶ℕ0 & ⊢ 𝑁 = (𝐹‘0) & ⊢ (𝑘 ∈ ℕ0 → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝐹‘𝑁) = 0 | ||
Theorem | lediv2aALT 35661 | Division of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) → (𝐴 ≤ 𝐵 → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))) | ||
Theorem | abs2sqlei 35662 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqlti 35663 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2)) | ||
Theorem | abs2sqle 35664 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) ≤ (abs‘𝐵) ↔ ((abs‘𝐴)↑2) ≤ ((abs‘𝐵)↑2))) | ||
Theorem | abs2sqlt 35665 | The absolute values of two numbers compare as their squares. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((abs‘𝐴) < (abs‘𝐵) ↔ ((abs‘𝐴)↑2) < ((abs‘𝐵)↑2))) | ||
Theorem | abs2difi 35666 | Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ ((abs‘𝐴) − (abs‘𝐵)) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | abs2difabsi 35667 | Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007.) |
⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ ⇒ ⊢ (abs‘((abs‘𝐴) − (abs‘𝐵))) ≤ (abs‘(𝐴 − 𝐵)) | ||
Theorem | 2thALT 35668 | Alternate proof of 2th 264. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 ⇒ ⊢ (𝜑 ↔ 𝜓) | ||
Theorem | orbi2iALT 35669 | Alternate proof of orbi2i 912. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) | ||
Theorem | pm3.48ALT 35670 | Alternate proof of pm3.48 965. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (((𝜑 → 𝜓) ∧ (𝜒 → 𝜃)) → ((𝜑 ∨ 𝜒) → (𝜓 ∨ 𝜃))) | ||
Theorem | 3jcadALT 35671 | Alternate proof of 3jcad 1128. (Contributed by Hongxiu Chen, 29-Jun-2025.) (Proof modification is discouraged.) Use 3jcad instead. (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃 ∧ 𝜏))) | ||
Theorem | currybi 35672 | Biconditional version of Curry's paradox. If some proposition 𝜑 amounts to the self-referential statement "This very statement is equivalent to 𝜓", then 𝜓 is true. See bj-currypara 36542 in BJ's mathbox for the classical version. (Contributed by Adrian Ducourtial, 18-Mar-2025.) |
⊢ ((𝜑 ↔ (𝜑 ↔ 𝜓)) → 𝜓) | ||
Theorem | antnest 35673 | Suppose 𝜑, 𝜓 are distinct atomic propositional formulas, and let Γ be the smallest class of formulas for which ⊤ ∈ Γ and (𝜒 → 𝜑), (𝜒 → 𝜓) ∈ Γ for 𝜒 ∈ Γ. The present theorem is then an element of Γ, and the implications occurring in the theorem are in one-to-one correspondence with the formulas in Γ up to logical equivalence. In particular, the theorem itself is equivalent to ⊤ ∈ Γ. (Contributed by Adrian Ducourtial, 2-Oct-2025.) |
⊢ ((((((⊤ → 𝜑) → 𝜓) → 𝜓) → 𝜑) → 𝜓) → 𝜓) | ||
Syntax | ccloneop 35674 | Syntax for the function of the class of operations on a set. |
class CloneOp | ||
Definition | df-cloneop 35675* | Define the function that sends a set to the class of clone-theoretic operations on the set. For convenience, we take an operation on 𝑎 to be a function on finite sequences of elements of 𝑎 (rather than tuples) with values in 𝑎. Following line 6 of [Szendrei] p. 11, the arity 𝑛 of an operation (here, the length of the sequences at which the operation is defined) is always finite and non-zero, whence 𝑛 is taken to be a non-zero finite ordinal. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) | ||
Syntax | cprj 35676 | Syntax for the function of projections on sets. |
class prj | ||
Definition | df-prj 35677* | Define the function that, for a set 𝑎, arity 𝑛, and index 𝑖, returns the 𝑖-th 𝑛-ary projection on 𝑎. This is the 𝑛-ary operation on 𝑎 that, for any sequence of 𝑛 elements of 𝑎, returns the element having index 𝑖. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) | ||
Syntax | csuppos 35678 | Syntax for the function of superpositions. |
class suppos | ||
Definition | df-suppos 35679* | Define the function that, when given an 𝑛-ary operation 𝑓 and 𝑛 many 𝑚-ary operations (𝑔‘∅), ..., (𝑔‘∪ 𝑛), returns the superposition of 𝑓 with the (𝑔‘𝑖), itself another 𝑚-ary operation on 𝑎. Given 𝑥 (a sequence of 𝑚 arguments in 𝑎), the superposition effectively applies each of the (𝑔‘𝑖) to 𝑥, then applies 𝑓 to the resulting sequence of 𝑛 function values. This can be seen as a generalized version of function composition; see paragraph 3 of [Szendrei] p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) | ||
Theorem | axextprim 35680 | ax-ext 2705 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) | ||
Theorem | axrepprim 35681 | ax-rep 5284 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (¬ ∀𝑦 ¬ ∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧 ¬ ((∀𝑦 𝑧 ∈ 𝑥 → ¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑)) → ¬ (¬ ∀𝑥(∀𝑧 𝑥 ∈ 𝑦 → ¬ ∀𝑦𝜑) → ∀𝑦 𝑧 ∈ 𝑥))) | ||
Theorem | axunprim 35682 | ax-un 7753 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦(¬ ∀𝑥(𝑦 ∈ 𝑥 → ¬ 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) | ||
Theorem | axpowprim 35683 | ax-pow 5370 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (∀𝑥 ¬ ∀𝑦(∀𝑥(¬ ∀𝑧 ¬ 𝑥 ∈ 𝑦 → ∀𝑦 𝑥 ∈ 𝑧) → 𝑦 ∈ 𝑥) → 𝑥 = 𝑦) | ||
Theorem | axregprim 35684 | ax-reg 9629 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ (𝑥 ∈ 𝑦 → ¬ ∀𝑥(𝑥 ∈ 𝑦 → ¬ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | axinfprim 35685 | ax-inf 9675 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 13-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ (𝑦 ∈ 𝑥 → ¬ ∀𝑦(𝑦 ∈ 𝑥 → ¬ ∀𝑧(𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑥)))) | ||
Theorem | axacprim 35686 | ax-ac 10496 without distinct variable conditions or defined symbols. (New usage is discouraged.) (Contributed by Scott Fenton, 26-Oct-2010.) |
⊢ ¬ ∀𝑥 ¬ ∀𝑦∀𝑧(∀𝑥 ¬ (𝑦 ∈ 𝑧 → ¬ 𝑧 ∈ 𝑤) → ¬ ∀𝑤 ¬ ∀𝑦 ¬ ((¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥))) → 𝑦 = 𝑤) → ¬ (𝑦 = 𝑤 → ¬ ∀𝑤(𝑦 ∈ 𝑧 → (𝑧 ∈ 𝑤 → (𝑦 ∈ 𝑤 → ¬ 𝑤 ∈ 𝑥)))))) | ||
Theorem | untelirr 35687* | We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 35773). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | untuni 35688* | The union of a class is untangled iff all its members are untangled. (Contributed by Scott Fenton, 28-Feb-2011.) |
⊢ (∀𝑥 ∈ ∪ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝑦 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untsucf 35689* | If a class is untangled, then so is its successor. (Contributed by Scott Fenton, 28-Feb-2011.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 → ∀𝑦 ∈ suc 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | unt0 35690 | The null set is untangled. (Contributed by Scott Fenton, 10-Mar-2011.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
⊢ ∀𝑥 ∈ ∅ ¬ 𝑥 ∈ 𝑥 | ||
Theorem | untint 35691* | If there is an untangled element of a class, then the intersection of the class is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦 → ∀𝑦 ∈ ∩ 𝐴 ¬ 𝑦 ∈ 𝑦) | ||
Theorem | efrunt 35692* | If 𝐴 is well-founded by E, then it is untangled. (Contributed by Scott Fenton, 1-Mar-2011.) |
⊢ ( E Fr 𝐴 → ∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥) | ||
Theorem | untangtr 35693* | A transitive class is untangled iff its elements are. (Contributed by Scott Fenton, 7-Mar-2011.) |
⊢ (Tr 𝐴 → (∀𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝑦)) | ||
Theorem | 3jaodd 35694 | Double deduction form of 3jaoi 1427. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃 ∨ 𝜏) → 𝜂))) | ||
Theorem | 3orit 35695 | Closed form of 3ori 1423. (Contributed by Scott Fenton, 20-Apr-2011.) |
⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) → 𝜒)) | ||
Theorem | biimpexp 35696 | A biconditional in the antecedent is the same as two implications. (Contributed by Scott Fenton, 12-Dec-2010.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((𝜑 → 𝜓) → ((𝜓 → 𝜑) → 𝜒))) | ||
Theorem | nepss 35697 | Two classes are unequal iff their intersection is a proper subset of one of them. (Contributed by Scott Fenton, 23-Feb-2011.) |
⊢ (𝐴 ≠ 𝐵 ↔ ((𝐴 ∩ 𝐵) ⊊ 𝐴 ∨ (𝐴 ∩ 𝐵) ⊊ 𝐵)) | ||
Theorem | 3ccased 35698 | Triple disjunction form of ccased 1038. (Contributed by Scott Fenton, 27-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝜑 → ((𝜒 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜒 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜃 ∧ 𝜎) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜂) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜁) → 𝜓)) & ⊢ (𝜑 → ((𝜏 ∧ 𝜎) → 𝜓)) ⇒ ⊢ (𝜑 → (((𝜒 ∨ 𝜃 ∨ 𝜏) ∧ (𝜂 ∨ 𝜁 ∨ 𝜎)) → 𝜓)) | ||
Theorem | dfso3 35699* | Expansion of the definition of a strict order. (Contributed by Scott Fenton, 6-Jun-2016.) |
⊢ (𝑅 Or 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧) ∧ (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) | ||
Theorem | brtpid1 35700 | A binary relation involving unordered triples. (Contributed by Scott Fenton, 7-Jun-2016.) |
⊢ 𝐴{〈𝐴, 𝐵〉, 𝐶, 𝐷}𝐵 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |