![]() |
Metamath
Proof Explorer Theorem List (p. 357 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | wnnf 35601 | Syntax for the nonfreeness quantifier. |
wff Ⅎ'𝑥𝜑 | ||
Definition | df-bj-nnf 35602 |
Definition of the nonfreeness quantifier. The formula Ⅎ'𝑥𝜑 has
the intended meaning that the variable 𝑥 is semantically nonfree in
the formula 𝜑. The motivation for this quantifier
is to have a
condition expressible in the logic which is as close as possible to the
non-occurrence condition DV (𝑥, 𝜑) (in Metamath files, "$d x ph
$."), which belongs to the metalogic.
The standard syntactic nonfreeness condition, also expressed in the metalogic, is intermediate between these two notions: semantic nonfreeness implies syntactic nonfreeness, which implies non-occurrence. Both implications are strict; for the first, note that ⊢ Ⅎ'𝑥𝑥 = 𝑥, that is, 𝑥 is semantically (but not syntactically) nonfree in the formula 𝑥 = 𝑥; for the second, note that 𝑥 is syntactically nonfree in the formula ∀𝑥𝑥 = 𝑥 although it occurs in it. We now prove two metatheorems which make precise the above fact that, as far as proving power is concerned, the nonfreeness condition Ⅎ'𝑥𝜑 is very close to the non-occurrence condition DV (𝑥, 𝜑). Let S be a Metamath system with the FOL-syntax of (i)set.mm, containing intuitionistic positive propositional calculus and ax-5 1914 and ax5e 1916. Theorem 1. If the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV ∪ {{𝑥, 𝜑}}). Proof: By bj-nnfv 35632, we can prove (Ⅎ'𝑥𝜑, {{𝑥, 𝜑}}), from which the theorem follows. QED Theorem 2. Suppose that S also contains (the FOL version of) modal logic KB and commutation of quantifiers alcom 2157 and excom 2163 (possibly weakened by a DV condition on the quantifying variables), and that S can be axiomatized such that the only axioms with a DV condition involving a formula variable are among ax-5 1914, ax5e 1916, ax5ea 1917. If the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV ∖ {{𝑥, 𝜑}}). More precisely, if S contains modal 45 and if the variables quantified over in PHI0, ..., PHIn are among 𝑥1, ..., 𝑥m, then the scheme (PHI1 & ... & PHIn ⇒ (antecedent → PHI0), DV ∖ {{𝑥, 𝜑}}) is provable in S, where the antecedent is a finite conjunction of formulas of the form ∀𝑥i1 ...∀𝑥ip Ⅎ'𝑥𝜑 where the 𝑥ij's are among the 𝑥i's. Lemma: If 𝑥 ∉ OC(PHI), then S proves the scheme (Ⅎ'𝑥𝜑 ⇒ Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}). More precisely, if the variables quantified over in PHI are among 𝑥1, ..., 𝑥m, then ((antecedent → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) is provable in S, with the same form of antecedent as above. Proof: By induction on the height of PHI. We first note that by bj-nnfbi 35603 we can assume that PHI contains only primitive (as opposed to defined) symbols. For the base case, atomic formulas are either 𝜑, in which case the scheme to prove is an instance of id 22, or have variables all in OC(PHI) ∖ {𝜑}, so (Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by bj-nnfv 35632, hence ((Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by a1i 11. For the induction step, PHI is either an implication, a negation, a conjunction, a disjunction, a biconditional, a universal or an existential quantification of formulas where 𝑥 does not occur. We use respectively bj-nnfim 35624, bj-nnfnt 35618, bj-nnfan 35626, bj-nnfor 35628, bj-nnfbit 35630, bj-nnfalt 35644, bj-nnfext 35645. For instance, in the implication case, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) and ((∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}), then bj-nnfim 35624 yields (((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 ∧ ∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑) → Ⅎ'𝑥 (PHI → PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI → PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. In the universal quantification case, say quantification over 𝑦, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}), then bj-nnfalt 35644 yields ((∀𝑦∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥∀𝑦 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(∀𝑦 PHI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. Note bj-nnfalt 35644 and bj-nnfext 35645 are proved from positive propositional calculus with alcom 2157 and excom 2163 (possibly weakened by a DV condition on the quantifying variables), and modalB (via bj-19.12 35639). QED Proof of the theorem: Consider a proof of that scheme directly from the axioms. Consider a step where a DV condition involving 𝜑 is used. By hypothesis, that step is an instance of ax-5 1914 or ax5e 1916 or ax5ea 1917. It has the form (PSI → ∀𝑥 PSI) where PSI has the form of the lemma and the DV conditions of the proof contain {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) }. Therefore, one has ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) for appropriate 𝑥i's, and by bj-nnfa 35606 we obtain ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → (PSI → ∀𝑥 PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the theorem. Similarly if the step is using ax5e 1916 or ax5ea 1917, we would use bj-nnfe 35609 or bj-nnfea 35612 respectively. Therefore, taking as antecedent of the theorem to prove the conjunction of all the antecedents at each of these steps, we obtain a proof by "carrying the context over", which is possible, as in the deduction theorem when the step uses ax-mp 5, and when the step uses ax-gen 1798, by bj-nnf-alrim 35633 and bj-nnfa1 35637 (which requires modal 45). The condition DV (𝑥, 𝜑) is not required by the resulting proof. Finally, there may be in the global antecedent thus constructed some dummy variables, which can be removed by spvw 1985. QED Compared with df-nf 1787, the present definition is stricter on positive propositional calculus (bj-nnfnfTEMP 35616) and equivalent on core FOL plus sp 2177 (bj-nfnnfTEMP 35636). While being stricter, it still holds for non-occurring variables (bj-nnfv 35632), which is the basic requirement for this quantifier. In particular, it translates more closely the associated variable disjointness condition. Since the nonfreeness quantifier is a means to translate a variable disjointness condition from the metalogic to the logic, it seems preferable. Also, since nonfreeness is mainly used as a hypothesis, this definition would allow more theorems, notably the 19.xx theorems, to be proved from the core axioms, without needing a 19.xxv variant. One can devise infinitely many definitions increasingly close to the non-occurring condition, like ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥∀𝑥... and each stronger definition would permit more theorems to be proved from the core axioms. A reasonable rule seems to be to stop before nested quantifiers appear (since they typically require ax-10 2138 to work with), and also not to have redundant conjuncts when full metacomplete FOL= is developed. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | ||
Theorem | bj-nnfbi 35603 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other. Compare nfbiit 1854. From this and bj-nnfim 35624 and bj-nnfnt 35618, one can prove analogous nonfreeness conservation results for other propositional operators. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 35619) in order not to require sp 2177 (modal T). (Contributed by BJ, 27-Aug-2023.) |
⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)) | ||
Theorem | bj-nnfbd 35604* | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi 35603. (Contributed by BJ, 27-Aug-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒)) | ||
Theorem | bj-nnfbii 35605 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, inference form. See bj-nnfbi 35603. (Contributed by BJ, 18-Nov-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓) | ||
Theorem | bj-nnfa 35606 | Nonfreeness implies the equivalent of ax-5 1914. See nf5r 2188. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfad 35607 | Nonfreeness implies the equivalent of ax-5 1914, deduction form. See nf5rd 2190. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | bj-nnfai 35608 | Nonfreeness implies the equivalent of ax-5 1914, inference form. See nf5ri 2189. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | bj-nnfe 35609 | Nonfreeness implies the equivalent of ax5e 1916. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | bj-nnfed 35610 | Nonfreeness implies the equivalent of ax5e 1916, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) | ||
Theorem | bj-nnfei 35611 | Nonfreeness implies the equivalent of ax5e 1916, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → 𝜑) | ||
Theorem | bj-nnfea 35612 | Nonfreeness implies the equivalent of ax5ea 1917. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfead 35613 | Nonfreeness implies the equivalent of ax5ea 1917, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) | ||
Theorem | bj-nnfeai 35614 | Nonfreeness implies the equivalent of ax5ea 1917, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | ||
Theorem | bj-dfnnf2 35615 | Alternate definition of df-bj-nnf 35602 using only primitive symbols (→, ¬, ∀) in each conjunct. (Contributed by BJ, 20-Aug-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | ||
Theorem | bj-nnfnfTEMP 35616 | New nonfreeness implies old nonfreeness on minimal implicational calculus (the proof indicates it uses ax-3 8 because of set.mm's definition of the biconditional, but the proof actually holds in minimal implicational calculus). (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787 except via df-nf 1787 directly. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 → Ⅎ𝑥𝜑) | ||
Theorem | bj-wnfnf 35617 | When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 35624, bj-nnfe1 35638 and bj-nnfa1 35637. (Contributed by BJ, 9-Dec-2023.) |
⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) | ||
Theorem | bj-nnfnt 35618 | A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 35624). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1860. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) | ||
Theorem | bj-nnftht 35619 | A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp 2177 (modal T), as in bj-nnfbi 35603. (Contributed by BJ, 28-Jul-2023.) |
⊢ ((𝜑 ∧ ∀𝑥𝜑) → Ⅎ'𝑥𝜑) | ||
Theorem | bj-nnfth 35620 | A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023.) |
⊢ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnfnth 35621 | A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.) |
⊢ ¬ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnfim1 35622 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-nnfim2 35623 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | ||
Theorem | bj-nnfim 35624 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | ||
Theorem | bj-nnfimd 35625 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 → 𝜒)) | ||
Theorem | bj-nnfan 35626 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim 35624, bj-nnfnt 35618 and bj-nnfbi 35603, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bj-nnfand 35627 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 35626, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 35626 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 35627 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | bj-nnfor 35628 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim 35624, bj-nnfnt 35618 and bj-nnfbi 35603, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | bj-nnford 35629 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 35628 and bj-nnfand 35627. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∨ 𝜒)) | ||
Theorem | bj-nnfbit 35630 | Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | bj-nnfbid 35631 | Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) | ||
Theorem | bj-nnfv 35632* | A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023.) |
⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnf-alrim 35633 | Proof of the closed form of alrimi 2207 from modalK (compare alrimiv 1931). See also bj-alrim 35571. Actually, most proofs between 19.3t 2195 and 2sbbid 2240 could be proved without ax-12 2172. (Contributed by BJ, 20-Aug-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-nnf-exlim 35634 | Proof of the closed form of exlimi 2211 from modalK (compare exlimiv 1934). See also bj-sylget2 35499. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | ||
Theorem | bj-dfnnf3 35635 | Alternate definition of nonfreeness when sp 2177 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nfnnfTEMP 35636 | New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2177. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1787 except via df-nf 1787 directly. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑) | ||
Theorem | bj-nnfa1 35637 | See nfa1 2149. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ Ⅎ'𝑥∀𝑥𝜑 | ||
Theorem | bj-nnfe1 35638 | See nfe1 2148. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ Ⅎ'𝑥∃𝑥𝜑 | ||
Theorem | bj-19.12 35639 | See 19.12 2321. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2163 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1787 or df-bj-nnf 35602, directly or indirectly. (Proof modification is discouraged.) |
⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
Theorem | bj-nnflemaa 35640 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 35559. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | ||
Theorem | bj-nnflemee 35641 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑)) | ||
Theorem | bj-nnflemae 35642 | One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | ||
Theorem | bj-nnflemea 35643 | One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∀𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfalt 35644 | See nfal 2317 and bj-nfalt 35589. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∀𝑥𝜑) | ||
Theorem | bj-nnfext 35645 | See nfex 2318 and bj-nfext 35590. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∃𝑥𝜑) | ||
Theorem | bj-stdpc5t 35646 | Alias of bj-nnf-alrim 35633 for labeling consistency (a standard predicate calculus axiom). Closed form of stdpc5 2202 proved from modalK (obsoleting stdpc5v 1942). (Contributed by BJ, 2-Dec-2023.) Use bj-nnf-alrim 35633 instead. (New usaged is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-19.21t 35647 | Statement 19.21t 2200 proved from modalK (obsoleting 19.21v 1943). (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-19.23t 35648 | Statement 19.23t 2204 proved from modalK (obsoleting 19.23v 1946). (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | bj-19.36im 35649 | One direction of 19.36 2224 from the same axioms as 19.36imv 1949. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | bj-19.37im 35650 | One direction of 19.37 2226 from the same axioms as 19.37imv 1952. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓))) | ||
Theorem | bj-19.42t 35651 | Closed form of 19.42 2230 from the same axioms as 19.42v 1958. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))) | ||
Theorem | bj-19.41t 35652 | Closed form of 19.41 2229 from the same axioms as 19.41v 1954. The same is doable with 19.27 2221, 19.28 2222, 19.31 2228, 19.32 2227, 19.44 2231, 19.45 2232. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) | ||
Theorem | bj-sbft 35653 | Version of sbft 2262 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.) |
⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | bj-pm11.53vw 35654 | Version of pm11.53v 1948 with nonfreeness antecedents. One can also prove the theorem with antecedent (Ⅎ'𝑦∀𝑥𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓). (Contributed by BJ, 7-Oct-2024.) |
⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ Ⅎ'𝑥∀𝑦𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-pm11.53v 35655 | Version of pm11.53v 1948 with nonfreeness antecedents. (Contributed by BJ, 7-Oct-2024.) |
⊢ ((∀𝑥Ⅎ'𝑦𝜑 ∧ ∀𝑦Ⅎ'𝑥𝜓) → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-pm11.53a 35656* | A variant of pm11.53v 1948. One can similarly prove a variant with DV (𝑦, 𝜑) and ∀𝑦Ⅎ'𝑥𝜓 instead of DV (𝑥, 𝜓) and ∀𝑥Ⅎ'𝑦𝜑. (Contributed by BJ, 7-Oct-2024.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → (∀𝑥∀𝑦(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-equsvt 35657* | A variant of equsv 2007. (Contributed by BJ, 7-Oct-2024.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) | ||
Theorem | bj-equsalvwd 35658* | Variant of equsalvw 2008. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜓) ↔ 𝜒)) | ||
Theorem | bj-equsexvwd 35659* | Variant of equsexvw 2009. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜓) ↔ 𝜒)) | ||
Theorem | bj-sbievwd 35660* | Variant of sbievw 2096. (Contributed by BJ, 7-Oct-2024.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) & ⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 ↔ 𝜒)) | ||
Theorem | bj-axc10 35661 | Alternate proof of axc10 2385. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2372, by using ax6ev 1974 instead of ax6e 2383. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | bj-alequex 35662 | A fol lemma. See alequexv 2005 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2386 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | ||
Theorem | bj-spimt2 35663 | A step in the proof of spimt 2386. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | bj-cbv3ta 35664 | Closed form of cbv3 2397. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-cbv3tb 35665 | Closed form of cbv3 2397. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦Ⅎ𝑥𝜓 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-hbsb3t 35666 | A theorem close to a closed form of hbsb3 2487. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | ||
Theorem | bj-hbsb3 35667 | Shorter proof of hbsb3 2487. (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfs1t 35668 | A theorem close to a closed form of nfs1 2488. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfs1t2 35669 | A theorem close to a closed form of nfs1 2488. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfs1 35670 | Shorter proof of nfs1 2488 (three essential steps instead of four). (Contributed by BJ, 2-May-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
It is known that ax-13 2372 is logically redundant (see ax13w 2133 and the head comment of the section "Logical redundancy of ax-10--13"). More precisely, one can remove dependency on ax-13 2372 from every theorem in set.mm which is totally unbundled (i.e., has disjoint variable conditions on all setvar variables). Indeed, start with the existing proof, and replace any occurrence of ax-13 2372 with ax13w 2133. This section is an experiment to see in practice if (partially) unbundled versions of existing theorems can be proved more efficiently without ax-13 2372 (and using ax6v 1973 / ax6ev 1974 instead of ax-6 1972 / ax6e 2383, as is currently done). One reason to be optimistic is that the first few utility theorems using ax-13 2372 (roughly 200 of them) are then used mainly with dummy variables, which one can assume distinct from any other, so that the unbundled versions of the utility theorems suffice. In this section, we prove versions of theorems in the main part with dv conditions and not requiring ax-13 2372, labeled bj-xxxv (we follow the proof of xxx but use ax6v 1973 and ax6ev 1974 instead of ax-6 1972 and ax6e 2383, and ax-5 1914 instead of ax13v 2373; shorter proofs may be possible). When no additional dv condition is required, we label it bj-xxx. It is important to keep all the bundled theorems already in set.mm, but one may also add the (partially) unbundled versions which dipense with ax-13 2372, so as to remove dependencies on ax-13 2372 from many existing theorems. UPDATE: it turns out that several theorems of the form bj-xxxv, or minor variations, are already in set.mm with label xxxw. It is also possible to remove dependencies on ax-11 2155, typically by replacing a nonfree hypothesis with a disjoint variable condition (see cbv3v2 2235 and following theorems). | ||
Theorem | bj-axc10v 35671* | Version of axc10 2385 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | bj-spimtv 35672* | Version of spimt 2386 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | bj-cbv3hv2 35673* | Version of cbv3h 2404 with two disjoint variable conditions, which does not require ax-11 2155 nor ax-13 2372. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | ||
Theorem | bj-cbv1hv 35674* | Version of cbv1h 2405 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 → 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 → ∀𝑦𝜒)) | ||
Theorem | bj-cbv2hv 35675* | Version of cbv2h 2406 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → (𝜓 → ∀𝑦𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbv2v 35676* | Version of cbv2 2403 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → Ⅎ𝑥𝜒) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvaldv 35677* | Version of cbvald 2407 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvexdv 35678* | Version of cbvexd 2408 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → (𝑥 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | bj-cbval2vv 35679* | Version of cbval2vv 2413 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑧∀𝑤𝜓) | ||
Theorem | bj-cbvex2vv 35680* | Version of cbvex2vv 2414 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤𝜓) | ||
Theorem | bj-cbvaldvav 35681* | Version of cbvaldva 2409 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑦𝜒)) | ||
Theorem | bj-cbvexdvav 35682* | Version of cbvexdva 2410 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝜑 ∧ 𝑥 = 𝑦) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒)) | ||
Theorem | bj-cbvex4vv 35683* | Version of cbvex4v 2415 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
⊢ ((𝑥 = 𝑣 ∧ 𝑦 = 𝑢) → (𝜑 ↔ 𝜓)) & ⊢ ((𝑧 = 𝑓 ∧ 𝑤 = 𝑔) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥∃𝑦∃𝑧∃𝑤𝜑 ↔ ∃𝑣∃𝑢∃𝑓∃𝑔𝜒) | ||
Theorem | bj-equsalhv 35684* |
Version of equsalh 2420 with a disjoint variable condition, which
does not
require ax-13 2372. Remark: this is the same as equsalhw 2288. TODO:
delete after moving the following paragraph somewhere.
Remarks: equsexvw 2009 has been moved to Main; Theorem ax13lem2 2376 has a DV version which is a simple consequence of ax5e 1916; Theorems nfeqf2 2377, dveeq2 2378, nfeqf1 2379, dveeq1 2380, nfeqf 2381, axc9 2382, ax13 2375, have dv versions which are simple consequences of ax-5 1914. (Contributed by BJ, 14-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜓) | ||
Theorem | bj-axc11nv 35685* | Version of axc11n 2426 with a disjoint variable condition; instance of aevlem 2059. TODO: delete after checking surrounding theorems. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | bj-aecomsv 35686* | Version of aecoms 2428 with a disjoint variable condition, provable from Tarski's FOL. The corresponding version of naecoms 2429 should not be very useful since ¬ ∀𝑥𝑥 = 𝑦, DV (𝑥, 𝑦) is true when the universe has at least two objects (see dtru 5437). (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | bj-axc11v 35687* | Version of axc11 2430 with a disjoint variable condition, which does not require ax-13 2372 nor ax-10 2138. Remark: the following theorems (hbae 2431, nfae 2433, hbnae 2432, nfnae 2434, hbnaes 2435) would need to be totally unbundled to be proved without ax-13 2372, hence would be simple consequences of ax-5 1914 or nfv 1918. (Contributed by BJ, 31-May-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | bj-drnf2v 35688* | Version of drnf2 2444 with a disjoint variable condition, which does not require ax-10 2138, ax-11 2155, ax-12 2172, ax-13 2372. Instance of nfbidv 1926. Note that the version of axc15 2422 with a disjoint variable condition is actually ax12v2 2174 (up to adding a superfluous antecedent). (Contributed by BJ, 17-Jun-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | bj-equs45fv 35689* | Version of equs45f 2459 with a disjoint variable condition, which does not require ax-13 2372. Note that the version of equs5 2460 with a disjoint variable condition is actually sbalex 2236 (up to adding a superfluous antecedent). (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | bj-hbs1 35690* | Version of hbsb2 2482 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from hbs1 2266. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfs1v 35691* | Version of nfsb2 2483 with a disjoint variable condition, which does not require ax-13 2372, and removal of ax-13 2372 from nfs1v 2154. (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | bj-hbsb2av 35692* | Version of hbsb2a 2484 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-hbsb3v 35693* | Version of hbsb3 2487 with a disjoint variable condition, which does not require ax-13 2372. (Remark: the unbundled version of nfs1 2488 is given by bj-nfs1v 35691.) (Contributed by BJ, 11-Sep-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | bj-nfsab1 35694* | Remove dependency on ax-13 2372 from nfsab1 2718. UPDATE / TODO: nfsab1 2718 does not use ax-13 2372 either anymore; bj-nfsab1 35694 is shorter than nfsab1 2718 but uses ax-12 2172. (Contributed by BJ, 23-Jun-2019.) (Proof modification is discouraged.) |
⊢ Ⅎ𝑥 𝑦 ∈ {𝑥 ∣ 𝜑} | ||
Theorem | bj-dtrucor2v 35695* | Version of dtrucor2 5371 with a disjoint variable condition, which does not require ax-13 2372 (nor ax-4 1812, ax-5 1914, ax-7 2012, ax-12 2172). (Contributed by BJ, 16-Jul-2019.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → 𝑥 ≠ 𝑦) ⇒ ⊢ (𝜑 ∧ ¬ 𝜑) | ||
The closed formula ∀𝑥∀𝑦𝑥 = 𝑦 approximately means that the var metavariables 𝑥 and 𝑦 represent the same variable vi. In a domain with at most one object, however, this formula is always true, hence the "approximately" in the previous sentence. | ||
Theorem | bj-hbaeb2 35696 | Biconditional version of a form of hbae 2431 with commuted quantifiers, not requiring ax-11 2155. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) | ||
Theorem | bj-hbaeb 35697 | Biconditional version of hbae 2431. (Contributed by BJ, 6-Oct-2018.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | bj-hbnaeb 35698 | Biconditional version of hbnae 2432 (to replace it?). (Contributed by BJ, 6-Oct-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 ↔ ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | bj-dvv 35699 | A special instance of bj-hbaeb2 35696. A lemma for distinct var metavariables. Note that the right-hand side is a closed formula (a sentence). (Contributed by BJ, 6-Oct-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑦 𝑥 = 𝑦) | ||
As a rule of thumb, if a theorem of the form ⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜒 ↔ 𝜃) is in the database, and the "more precise" theorems ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜒 → 𝜃) and ⊢ (𝜓 → 𝜑) ⇒ ⊢ (𝜃 → 𝜒) also hold (see bj-bisym 35468), then they should be added to the database. The present case is similar. Similar additions can be done regarding equsex 2418 (and equsalh 2420 and equsexh 2421). Even if only one of these two theorems holds, it should be added to the database. | ||
Theorem | bj-equsal1t 35700 | Duplication of wl-equsal1t 36410, with shorter proof. If one imposes a disjoint variable condition on x,y , then one can use alequexv 2005 and reduce axiom dependencies, and similarly for the following theorems. Note: wl-equsalcom 36411 is also interesting. (Contributed by BJ, 6-Oct-2018.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ 𝜑)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |