| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnflemea | Structured version Visualization version GIF version | ||
| Description: One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-nnflemea | ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∀𝑥𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-19.12 36721 | . 2 ⊢ (∃𝑦∀𝑥𝜑 → ∀𝑥∃𝑦𝜑) | |
| 2 | alim 1809 | . 2 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∀𝑥∃𝑦𝜑 → ∀𝑥𝜑)) | |
| 3 | 1, 2 | syl5 34 | 1 ⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∀𝑥𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: bj-nnfalt 36726 |
| Copyright terms: Public domain | W3C validator |