Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfnth Structured version   Visualization version   GIF version

Theorem bj-nnfnth 34925
Description: A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.)
Hypothesis
Ref Expression
bj-nnfnth.1 ¬ 𝜑
Assertion
Ref Expression
bj-nnfnth Ⅎ'𝑥𝜑

Proof of Theorem bj-nnfnth
StepHypRef Expression
1 bj-nnfnth.1 . . 3 ¬ 𝜑
21bj-nnfth 34924 . 2 Ⅎ'𝑥 ¬ 𝜑
3 bj-nnfnt 34922 . 2 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
42, 3mpbir 230 1 Ⅎ'𝑥𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator