| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfnt | Structured version Visualization version GIF version | ||
| Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36790). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1857. (Contributed by BJ, 28-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-nnfnt | ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eximal 1783 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 2 | alimex 1832 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑)) | |
| 3 | 1, 2 | anbi12ci 629 | . 2 ⊢ (((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) |
| 4 | df-bj-nnf 36768 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
| 5 | df-bj-nnf 36768 | . 2 ⊢ (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | 1 ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 Ⅎ'wnnf 36767 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-bj-nnf 36768 |
| This theorem is referenced by: bj-nnfnth 36787 bj-equsexvwd 36825 |
| Copyright terms: Public domain | W3C validator |