Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfnt Structured version   Visualization version   GIF version

Theorem bj-nnfnt 34849
Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 34855). Intuitionistically, (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1860. (Contributed by BJ, 28-Jul-2023.)
Assertion
Ref Expression
bj-nnfnt (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)

Proof of Theorem bj-nnfnt
StepHypRef Expression
1 eximal 1786 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
2 alimex 1834 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑))
31, 2anbi12ci 627 . 2 (((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
4 df-bj-nnf 34833 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
5 df-bj-nnf 34833 . 2 (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
63, 4, 53bitr4i 302 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537  wex 1783  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-bj-nnf 34833
This theorem is referenced by:  bj-nnfnth  34852  bj-equsexvwd  34890
  Copyright terms: Public domain W3C validator