Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nnfnt | Structured version Visualization version GIF version |
Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 34855). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1860. (Contributed by BJ, 28-Jul-2023.) |
Ref | Expression |
---|---|
bj-nnfnt | ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eximal 1786 | . . 3 ⊢ ((∃𝑥𝜑 → 𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
2 | alimex 1834 | . . 3 ⊢ ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑)) | |
3 | 1, 2 | anbi12ci 627 | . 2 ⊢ (((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) |
4 | df-bj-nnf 34833 | . 2 ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | |
5 | df-bj-nnf 34833 | . 2 ⊢ (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | |
6 | 3, 4, 5 | 3bitr4i 302 | 1 ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 Ⅎ'wnnf 34832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-bj-nnf 34833 |
This theorem is referenced by: bj-nnfnth 34852 bj-equsexvwd 34890 |
Copyright terms: Public domain | W3C validator |