Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfnt Structured version   Visualization version   GIF version

Theorem bj-nnfnt 36728
Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36734). Intuitionistically, (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1856. (Contributed by BJ, 28-Jul-2023.)
Assertion
Ref Expression
bj-nnfnt (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)

Proof of Theorem bj-nnfnt
StepHypRef Expression
1 eximal 1782 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
2 alimex 1831 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑))
31, 2anbi12ci 629 . 2 (((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
4 df-bj-nnf 36712 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
5 df-bj-nnf 36712 . 2 (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
63, 4, 53bitr4i 303 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779  Ⅎ'wnnf 36711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-bj-nnf 36712
This theorem is referenced by:  bj-nnfnth  36731  bj-equsexvwd  36769
  Copyright terms: Public domain W3C validator