Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfnt Structured version   Visualization version   GIF version

Theorem bj-nnfnt 36784
Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36790). Intuitionistically, (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1857. (Contributed by BJ, 28-Jul-2023.)
Assertion
Ref Expression
bj-nnfnt (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)

Proof of Theorem bj-nnfnt
StepHypRef Expression
1 eximal 1783 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
2 alimex 1832 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑))
31, 2anbi12ci 629 . 2 (((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
4 df-bj-nnf 36768 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
5 df-bj-nnf 36768 . 2 (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
63, 4, 53bitr4i 303 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539  wex 1780  Ⅎ'wnnf 36767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-bj-nnf 36768
This theorem is referenced by:  bj-nnfnth  36787  bj-equsexvwd  36825
  Copyright terms: Public domain W3C validator