Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnfnt Structured version   Visualization version   GIF version

Theorem bj-nnfnt 36706
Description: A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 36712). Intuitionistically, (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1855. (Contributed by BJ, 28-Jul-2023.)
Assertion
Ref Expression
bj-nnfnt (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)

Proof of Theorem bj-nnfnt
StepHypRef Expression
1 eximal 1780 . . 3 ((∃𝑥𝜑𝜑) ↔ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
2 alimex 1829 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (∃𝑥 ¬ 𝜑 → ¬ 𝜑))
31, 2anbi12ci 628 . 2 (((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
4 df-bj-nnf 36690 . 2 (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
5 df-bj-nnf 36690 . 2 (Ⅎ'𝑥 ¬ 𝜑 ↔ ((∃𝑥 ¬ 𝜑 → ¬ 𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑)))
63, 4, 53bitr4i 303 1 (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535  wex 1777  Ⅎ'wnnf 36689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-bj-nnf 36690
This theorem is referenced by:  bj-nnfnth  36709  bj-equsexvwd  36747
  Copyright terms: Public domain W3C validator