| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-notalbii | Structured version Visualization version GIF version | ||
| Description: Equivalence of universal quantification of negation of equivalent formulas. Shortens ab0 4360 (103>94), ballotlem2 34450 (2655>2648), bnj1143 34763 (522>519), hausdiag 23599 (2119>2104). (Contributed by BJ, 17-Jul-2021.) |
| Ref | Expression |
|---|---|
| bj-notalbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| bj-notalbii | ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-notalbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
| 3 | 2 | albii 1818 | 1 ⊢ (∀𝑥 ¬ 𝜑 ↔ ∀𝑥 ¬ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |