MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausdiag Structured version   Visualization version   GIF version

Theorem hausdiag 23560
Description: A topology is Hausdorff iff the diagonal set is closed in the topology's product with itself. EDITORIAL: very clumsy proof, can probably be shortened substantially. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Hypothesis
Ref Expression
hausdiag.x 𝑋 = 𝐽
Assertion
Ref Expression
hausdiag (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))

Proof of Theorem hausdiag
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hausdiag.x . . 3 𝑋 = 𝐽
21ishaus 23237 . 2 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
3 txtop 23484 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
43anidms 566 . . . . 5 (𝐽 ∈ Top → (𝐽 ×t 𝐽) ∈ Top)
5 idssxp 5997 . . . . . 6 ( I ↾ 𝑋) ⊆ (𝑋 × 𝑋)
61, 1txuni 23507 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
76anidms 566 . . . . . 6 (𝐽 ∈ Top → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
85, 7sseqtrid 3972 . . . . 5 (𝐽 ∈ Top → ( I ↾ 𝑋) ⊆ (𝐽 ×t 𝐽))
9 eqid 2731 . . . . . 6 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
109iscld2 22943 . . . . 5 (((𝐽 ×t 𝐽) ∈ Top ∧ ( I ↾ 𝑋) ⊆ (𝐽 ×t 𝐽)) → (( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽)))
114, 8, 10syl2anc 584 . . . 4 (𝐽 ∈ Top → (( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽)) ↔ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽)))
12 eltx 23483 . . . . 5 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽) ↔ ∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
1312anidms 566 . . . 4 (𝐽 ∈ Top → (( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ∈ (𝐽 ×t 𝐽) ↔ ∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
14 eldif 3907 . . . . . . . . . 10 (𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑒 (𝐽 ×t 𝐽) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)))
157eqcomd 2737 . . . . . . . . . . . 12 (𝐽 ∈ Top → (𝐽 ×t 𝐽) = (𝑋 × 𝑋))
1615eleq2d 2817 . . . . . . . . . . 11 (𝐽 ∈ Top → (𝑒 (𝐽 ×t 𝐽) ↔ 𝑒 ∈ (𝑋 × 𝑋)))
1716anbi1d 631 . . . . . . . . . 10 (𝐽 ∈ Top → ((𝑒 (𝐽 ×t 𝐽) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) ↔ (𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋))))
1814, 17bitrid 283 . . . . . . . . 9 (𝐽 ∈ Top → (𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋))))
1918imbi1d 341 . . . . . . . 8 (𝐽 ∈ Top → ((𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ((𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
20 impexp 450 . . . . . . . 8 (((𝑒 ∈ (𝑋 × 𝑋) ∧ ¬ 𝑒 ∈ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑒 ∈ (𝑋 × 𝑋) → (¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
2119, 20bitrdi 287 . . . . . . 7 (𝐽 ∈ Top → ((𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑒 ∈ (𝑋 × 𝑋) → (¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))))
2221ralbidv2 3151 . . . . . 6 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑒 ∈ (𝑋 × 𝑋)(¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
23 eleq1 2819 . . . . . . . . 9 (𝑒 = ⟨𝑎, 𝑏⟩ → (𝑒 ∈ ( I ↾ 𝑋) ↔ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋)))
2423notbid 318 . . . . . . . 8 (𝑒 = ⟨𝑎, 𝑏⟩ → (¬ 𝑒 ∈ ( I ↾ 𝑋) ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋)))
25 eleq1 2819 . . . . . . . . . 10 (𝑒 = ⟨𝑎, 𝑏⟩ → (𝑒 ∈ (𝑐 × 𝑑) ↔ ⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑)))
2625anbi1d 631 . . . . . . . . 9 (𝑒 = ⟨𝑎, 𝑏⟩ → ((𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
27262rexbidv 3197 . . . . . . . 8 (𝑒 = ⟨𝑎, 𝑏⟩ → (∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
2824, 27imbi12d 344 . . . . . . 7 (𝑒 = ⟨𝑎, 𝑏⟩ → ((¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
2928ralxp 5780 . . . . . 6 (∀𝑒 ∈ (𝑋 × 𝑋)(¬ 𝑒 ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))))
3022, 29bitrdi 287 . . . . 5 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))))
31 vex 3440 . . . . . . . . . . 11 𝑏 ∈ V
3231opelresi 5935 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ (𝑎𝑋 ∧ ⟨𝑎, 𝑏⟩ ∈ I ))
33 ibar 528 . . . . . . . . . . . 12 (𝑎𝑋 → (⟨𝑎, 𝑏⟩ ∈ I ↔ (𝑎𝑋 ∧ ⟨𝑎, 𝑏⟩ ∈ I )))
3433adantr 480 . . . . . . . . . . 11 ((𝑎𝑋𝑏𝑋) → (⟨𝑎, 𝑏⟩ ∈ I ↔ (𝑎𝑋 ∧ ⟨𝑎, 𝑏⟩ ∈ I )))
35 df-br 5090 . . . . . . . . . . . 12 (𝑎 I 𝑏 ↔ ⟨𝑎, 𝑏⟩ ∈ I )
3631ideq 5791 . . . . . . . . . . . 12 (𝑎 I 𝑏𝑎 = 𝑏)
3735, 36bitr3i 277 . . . . . . . . . . 11 (⟨𝑎, 𝑏⟩ ∈ I ↔ 𝑎 = 𝑏)
3834, 37bitr3di 286 . . . . . . . . . 10 ((𝑎𝑋𝑏𝑋) → ((𝑎𝑋 ∧ ⟨𝑎, 𝑏⟩ ∈ I ) ↔ 𝑎 = 𝑏))
3932, 38bitrid 283 . . . . . . . . 9 ((𝑎𝑋𝑏𝑋) → (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎 = 𝑏))
4039adantl 481 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎 = 𝑏))
4140necon3bbid 2965 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) ↔ 𝑎𝑏))
42 elssuni 4887 . . . . . . . . . . . . . . . 16 (𝑐𝐽𝑐 𝐽)
43 elssuni 4887 . . . . . . . . . . . . . . . 16 (𝑑𝐽𝑑 𝐽)
44 xpss12 5629 . . . . . . . . . . . . . . . 16 ((𝑐 𝐽𝑑 𝐽) → (𝑐 × 𝑑) ⊆ ( 𝐽 × 𝐽))
4542, 43, 44syl2an 596 . . . . . . . . . . . . . . 15 ((𝑐𝐽𝑑𝐽) → (𝑐 × 𝑑) ⊆ ( 𝐽 × 𝐽))
461, 1xpeq12i 5642 . . . . . . . . . . . . . . 15 (𝑋 × 𝑋) = ( 𝐽 × 𝐽)
4745, 46sseqtrrdi 3971 . . . . . . . . . . . . . 14 ((𝑐𝐽𝑑𝐽) → (𝑐 × 𝑑) ⊆ (𝑋 × 𝑋))
4847adantl 481 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑐 × 𝑑) ⊆ (𝑋 × 𝑋))
497ad2antrr 726 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
5048, 49sseqtrd 3966 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (𝑐 × 𝑑) ⊆ (𝐽 ×t 𝐽))
51 reldisj 4400 . . . . . . . . . . . 12 ((𝑐 × 𝑑) ⊆ (𝐽 ×t 𝐽) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
5250, 51syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
53 df-res 5626 . . . . . . . . . . . . . . 15 ( I ↾ 𝑋) = ( I ∩ (𝑋 × V))
5453ineq2i 4164 . . . . . . . . . . . . . 14 ((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V)))
55 inass 4175 . . . . . . . . . . . . . . 15 (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V)))
56 inss1 4184 . . . . . . . . . . . . . . . . . 18 ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑐 × 𝑑)
5756, 48sstrid 3941 . . . . . . . . . . . . . . . . 17 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × 𝑋))
58 ssv 3954 . . . . . . . . . . . . . . . . . 18 𝑋 ⊆ V
59 xpss2 5634 . . . . . . . . . . . . . . . . . 18 (𝑋 ⊆ V → (𝑋 × 𝑋) ⊆ (𝑋 × V))
6058, 59ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑋 × 𝑋) ⊆ (𝑋 × V)
6157, 60sstrdi 3942 . . . . . . . . . . . . . . . 16 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × V))
62 dfss2 3915 . . . . . . . . . . . . . . . 16 (((𝑐 × 𝑑) ∩ I ) ⊆ (𝑋 × V) ↔ (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ I ))
6361, 62sylib 218 . . . . . . . . . . . . . . 15 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ I ) ∩ (𝑋 × V)) = ((𝑐 × 𝑑) ∩ I ))
6455, 63eqtr3id 2780 . . . . . . . . . . . . . 14 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ ( I ∩ (𝑋 × V))) = ((𝑐 × 𝑑) ∩ I ))
6554, 64eqtrid 2778 . . . . . . . . . . . . 13 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ((𝑐 × 𝑑) ∩ I ))
6665eqeq1d 2733 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ ((𝑐 × 𝑑) ∩ I ) = ∅))
67 opelxp 5650 . . . . . . . . . . . . . . . 16 (⟨𝑎, 𝑎⟩ ∈ (𝑐 × 𝑑) ↔ (𝑎𝑐𝑎𝑑))
68 df-br 5090 . . . . . . . . . . . . . . . 16 (𝑎(𝑐 × 𝑑)𝑎 ↔ ⟨𝑎, 𝑎⟩ ∈ (𝑐 × 𝑑))
69 elin 3913 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝑐𝑑) ↔ (𝑎𝑐𝑎𝑑))
7067, 68, 693bitr4i 303 . . . . . . . . . . . . . . 15 (𝑎(𝑐 × 𝑑)𝑎𝑎 ∈ (𝑐𝑑))
7170notbii 320 . . . . . . . . . . . . . 14 𝑎(𝑐 × 𝑑)𝑎 ↔ ¬ 𝑎 ∈ (𝑐𝑑))
7271albii 1820 . . . . . . . . . . . . 13 (∀𝑎 ¬ 𝑎(𝑐 × 𝑑)𝑎 ↔ ∀𝑎 ¬ 𝑎 ∈ (𝑐𝑑))
73 intirr 6064 . . . . . . . . . . . . 13 (((𝑐 × 𝑑) ∩ I ) = ∅ ↔ ∀𝑎 ¬ 𝑎(𝑐 × 𝑑)𝑎)
74 eq0 4297 . . . . . . . . . . . . 13 ((𝑐𝑑) = ∅ ↔ ∀𝑎 ¬ 𝑎 ∈ (𝑐𝑑))
7572, 73, 743bitr4i 303 . . . . . . . . . . . 12 (((𝑐 × 𝑑) ∩ I ) = ∅ ↔ (𝑐𝑑) = ∅)
7666, 75bitrdi 287 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑐 × 𝑑) ∩ ( I ↾ 𝑋)) = ∅ ↔ (𝑐𝑑) = ∅))
7752, 76bitr3d 281 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)) ↔ (𝑐𝑑) = ∅))
7877anbi2d 630 . . . . . . . . 9 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → (((𝑎𝑐𝑏𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐𝑑) = ∅)))
79 opelxp 5650 . . . . . . . . . 10 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ↔ (𝑎𝑐𝑏𝑑))
8079anbi1i 624 . . . . . . . . 9 ((⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))))
81 df-3an 1088 . . . . . . . . 9 ((𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅) ↔ ((𝑎𝑐𝑏𝑑) ∧ (𝑐𝑑) = ∅))
8278, 80, 813bitr4g 314 . . . . . . . 8 (((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) ∧ (𝑐𝐽𝑑𝐽)) → ((⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)))
83822rexbidva 3195 . . . . . . 7 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → (∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)))
8441, 83imbi12d 344 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑎𝑋𝑏𝑋)) → ((¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
85842ralbidva 3194 . . . . 5 (𝐽 ∈ Top → (∀𝑎𝑋𝑏𝑋 (¬ ⟨𝑎, 𝑏⟩ ∈ ( I ↾ 𝑋) → ∃𝑐𝐽𝑑𝐽 (⟨𝑎, 𝑏⟩ ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋)))) ↔ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
8630, 85bitrd 279 . . . 4 (𝐽 ∈ Top → (∀𝑒 ∈ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))∃𝑐𝐽𝑑𝐽 (𝑒 ∈ (𝑐 × 𝑑) ∧ (𝑐 × 𝑑) ⊆ ( (𝐽 ×t 𝐽) ∖ ( I ↾ 𝑋))) ↔ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))))
8711, 13, 863bitrrd 306 . . 3 (𝐽 ∈ Top → (∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅)) ↔ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
8887pm5.32i 574 . 2 ((𝐽 ∈ Top ∧ ∀𝑎𝑋𝑏𝑋 (𝑎𝑏 → ∃𝑐𝐽𝑑𝐽 (𝑎𝑐𝑏𝑑 ∧ (𝑐𝑑) = ∅))) ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
892, 88bitri 275 1 (𝐽 ∈ Haus ↔ (𝐽 ∈ Top ∧ ( I ↾ 𝑋) ∈ (Clsd‘(𝐽 ×t 𝐽))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  cin 3896  wss 3897  c0 4280  cop 4579   cuni 4856   class class class wbr 5089   I cid 5508   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  Topctop 22808  Clsdccld 22931  Hauscha 23223   ×t ctx 23475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-topgen 17347  df-top 22809  df-topon 22826  df-bases 22861  df-cld 22934  df-haus 23230  df-tx 23477
This theorem is referenced by:  hauseqlcld  23561  tgphaus  24032  qtophaus  33849
  Copyright terms: Public domain W3C validator