| Step | Hyp | Ref
| Expression |
| 1 | | df-iun 4993 |
. . . 4
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
| 2 | | notnotb 315 |
. . . . . . . 8
⊢ (𝐴 = ∅ ↔ ¬ ¬
𝐴 =
∅) |
| 3 | | neq0 4352 |
. . . . . . . 8
⊢ (¬
𝐴 = ∅ ↔
∃𝑥 𝑥 ∈ 𝐴) |
| 4 | 2, 3 | xchbinx 334 |
. . . . . . 7
⊢ (𝐴 = ∅ ↔ ¬
∃𝑥 𝑥 ∈ 𝐴) |
| 5 | | df-rex 3071 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) |
| 6 | | exsimpl 1868 |
. . . . . . . . 9
⊢
(∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) → ∃𝑥 𝑥 ∈ 𝐴) |
| 7 | 5, 6 | sylbi 217 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 𝑧 ∈ 𝐵 → ∃𝑥 𝑥 ∈ 𝐴) |
| 8 | 7 | con3i 154 |
. . . . . . 7
⊢ (¬
∃𝑥 𝑥 ∈ 𝐴 → ¬ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 9 | 4, 8 | sylbi 217 |
. . . . . 6
⊢ (𝐴 = ∅ → ¬
∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 10 | 9 | alrimiv 1927 |
. . . . 5
⊢ (𝐴 = ∅ → ∀𝑧 ¬ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 11 | | notnotb 315 |
. . . . . . 7
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅ ↔ ¬ ¬ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅) |
| 12 | | neq0 4352 |
. . . . . . . 8
⊢ (¬
∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ∃𝑧 𝑧 ∈ ∪
𝑥 ∈ 𝐴 𝐵) |
| 13 | 1 | eqeq1i 2742 |
. . . . . . . . 9
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅) |
| 14 | 13 | notbii 320 |
. . . . . . . 8
⊢ (¬
∪ 𝑥 ∈ 𝐴 𝐵 = ∅ ↔ ¬ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅) |
| 15 | | df-iun 4993 |
. . . . . . . . . 10
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 16 | 15 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 17 | 16 | exbii 1848 |
. . . . . . . 8
⊢
(∃𝑧 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 18 | 12, 14, 17 | 3bitr3i 301 |
. . . . . . 7
⊢ (¬
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅ ↔ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 19 | 11, 18 | xchbinx 334 |
. . . . . 6
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅ ↔ ¬ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 20 | | alnex 1781 |
. . . . . 6
⊢
(∀𝑧 ¬
𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ ¬ ∃𝑧 𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
| 21 | | abid 2718 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 22 | 21 | notbii 320 |
. . . . . . 7
⊢ (¬
𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ ¬ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 23 | 22 | albii 1819 |
. . . . . 6
⊢
(∀𝑧 ¬
𝑧 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} ↔ ∀𝑧 ¬ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 24 | 19, 20, 23 | 3bitr2i 299 |
. . . . 5
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅ ↔ ∀𝑧 ¬ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
| 25 | 10, 24 | sylibr 234 |
. . . 4
⊢ (𝐴 = ∅ → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} = ∅) |
| 26 | 1, 25 | eqtrid 2789 |
. . 3
⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = ∅) |
| 27 | | 0ss 4400 |
. . 3
⊢ ∅
⊆ 𝐵 |
| 28 | 26, 27 | eqsstrdi 4028 |
. 2
⊢ (𝐴 = ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| 29 | | iunconst 5001 |
. . 3
⊢ (𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
| 30 | | eqimss 4042 |
. . 3
⊢ (∪ 𝑥 ∈ 𝐴 𝐵 = 𝐵 → ∪
𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| 31 | 29, 30 | syl 17 |
. 2
⊢ (𝐴 ≠ ∅ → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) |
| 32 | 28, 31 | pm2.61ine 3025 |
1
⊢ ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 |