Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   GIF version

Theorem ballotlem2 31398
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
Assertion
Ref Expression
ballotlem2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem ballotlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
41, 2, 3ballotlemoex 31395 . . . . 5 𝑂 ∈ V
5 ssrab2 3946 . . . . 5 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
64, 5elpwi2 5105 . . . 4 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
7 fveq2 6499 . . . . . 6 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
87oveq1d 6991 . . . . 5 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
9 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ovex 7008 . . . . 5 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) ∈ V
118, 9, 10fvmpt 6595 . . . 4 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
126, 11ax-mp 5 . . 3 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
13 an32 633 . . . . . . . 8 (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
14 2eluzge1 12108 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
15 fzss1 12762 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))
17 sspwb 5198 . . . . . . . . . . . . 13 ((2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) ↔ 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁)))
1816, 17mpbi 222 . . . . . . . . . . . 12 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))
1918sseli 3854 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)))
20 1lt2 11618 . . . . . . . . . . . . . . . 16 1 < 2
21 1re 10439 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
22 2re 11514 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2321, 22ltnlei 10561 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
2420, 23mpbi 222 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
25 elfzle1 12726 . . . . . . . . . . . . . . 15 (1 ∈ (2...(𝑀 + 𝑁)) → 2 ≤ 1)
2624, 25mto 189 . . . . . . . . . . . . . 14 ¬ 1 ∈ (2...(𝑀 + 𝑁))
27 elelpwi 4435 . . . . . . . . . . . . . 14 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁)))
2826, 27mto 189 . . . . . . . . . . . . 13 ¬ (1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
29 ancom 453 . . . . . . . . . . . . 13 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐))
3028, 29mtbi 314 . . . . . . . . . . . 12 ¬ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)
3130imnani 392 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐)
3219, 31jca 504 . . . . . . . . . 10 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
33 ssin 4094 . . . . . . . . . . . 12 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}))
34 1le2 11656 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
35 1p1e2 11572 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
36 nnge1 11468 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
371, 36ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑀
38 nnge1 11468 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
392, 38ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑁
401nnrei 11449 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 ∈ ℝ
412nnrei 11449 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ ℝ
4221, 21, 40, 41le2addi 11004 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ≤ 𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁))
4337, 39, 42mp2an 679 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) ≤ (𝑀 + 𝑁)
4435, 43eqbrtrri 4952 . . . . . . . . . . . . . . . . . . . . 21 2 ≤ (𝑀 + 𝑁)
4540, 41readdcli 10455 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℝ
4621, 22, 45letri 10569 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁))
4734, 44, 46mp2an 679 . . . . . . . . . . . . . . . . . . . 20 1 ≤ (𝑀 + 𝑁)
48 1z 11825 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
49 nnaddcl 11463 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
501, 2, 49mp2an 679 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℕ
5150nnzi 11819 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 + 𝑁) ∈ ℤ
52 eluz 12072 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁)))
5348, 51, 52mp2an 679 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁))
5447, 53mpbir 223 . . . . . . . . . . . . . . . . . . 19 (𝑀 + 𝑁) ∈ (ℤ‘1)
55 elfzp12 12802 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 𝑁) ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))))
5654, 55ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5756biimpi 208 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5857orcanai 985 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))
5935oveq1i 6986 . . . . . . . . . . . . . . . 16 ((1 + 1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁))
6058, 59syl6eleq 2876 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁)))
6160ss2abi 3933 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))}
62 inab 4158 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)}
63 abid2 2909 . . . . . . . . . . . . . . . 16 {𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁))
6463ineq1i 4072 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
6562, 64eqtr3i 2804 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
66 abid2 2909 . . . . . . . . . . . . . 14 {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁))
6761, 65, 663sstr3i 3899 . . . . . . . . . . . . 13 ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))
68 sstr 3866 . . . . . . . . . . . . 13 ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6967, 68mpan2 678 . . . . . . . . . . . 12 (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
7033, 69sylbi 209 . . . . . . . . . . 11 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
71 selpw 4429 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁)))
72 ssab 3931 . . . . . . . . . . . . 13 (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1))
73 df-ex 1743 . . . . . . . . . . . . . . . 16 (∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
7473bicomi 216 . . . . . . . . . . . . . . 15 (¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7574con1bii 349 . . . . . . . . . . . . . 14 (¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
76 dfclel 2847 . . . . . . . . . . . . . . 15 (1 ∈ 𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7776notbii 312 . . . . . . . . . . . . . 14 (¬ 1 ∈ 𝑐 ↔ ¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
78 imnang 1804 . . . . . . . . . . . . . . 15 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
79 ancom 453 . . . . . . . . . . . . . . . . 17 ((𝑖 = 1 ∧ 𝑖𝑐) ↔ (𝑖𝑐𝑖 = 1))
8079notbii 312 . . . . . . . . . . . . . . . 16 (¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ (𝑖𝑐𝑖 = 1))
8180albii 1782 . . . . . . . . . . . . . . 15 (∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
8278, 81bitr4i 270 . . . . . . . . . . . . . 14 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
8375, 77, 823bitr4ri 296 . . . . . . . . . . . . 13 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐)
8472, 83bitr2i 268 . . . . . . . . . . . 12 (¬ 1 ∈ 𝑐𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})
8571, 84anbi12i 617 . . . . . . . . . . 11 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}))
86 selpw 4429 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁)))
8770, 85, 863imtr4i 284 . . . . . . . . . 10 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
8832, 87impbii 201 . . . . . . . . 9 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
8988anbi1i 614 . . . . . . . 8 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀))
903rabeq2i 3410 . . . . . . . . 9 (𝑐𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀))
9190anbi1i 614 . . . . . . . 8 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
9213, 89, 913bitr4i 295 . . . . . . 7 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
9392rabbia2 3401 . . . . . 6 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
9493fveq2i 6502 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
95 fzfi 13155 . . . . . . 7 (2...(𝑀 + 𝑁)) ∈ Fin
961nnzi 11819 . . . . . . 7 𝑀 ∈ ℤ
97 hashbc 13624 . . . . . . 7 (((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}))
9895, 96, 97mp2an 679 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})
99 2z 11827 . . . . . . . . . . . 12 2 ∈ ℤ
10099eluz1i 12066 . . . . . . . . . . 11 ((𝑀 + 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤ (𝑀 + 𝑁)))
10151, 44, 100mpbir2an 698 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ (ℤ‘2)
102 hashfz 13601 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ (ℤ‘2) → (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1))
103101, 102ax-mp 5 . . . . . . . . 9 (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)
1041nncni 11450 . . . . . . . . . . 11 𝑀 ∈ ℂ
1052nncni 11450 . . . . . . . . . . 11 𝑁 ∈ ℂ
106104, 105addcli 10446 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℂ
107 2cn 11515 . . . . . . . . . 10 2 ∈ ℂ
108 ax-1cn 10393 . . . . . . . . . 10 1 ∈ ℂ
109 subadd23 10699 . . . . . . . . . 10 (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)))
110106, 107, 108, 109mp3an 1440 . . . . . . . . 9 (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))
111107, 108negsubdi2i 10773 . . . . . . . . . . 11 -(2 − 1) = (1 − 2)
112 2m1e1 11573 . . . . . . . . . . . 12 (2 − 1) = 1
113112negeqi 10679 . . . . . . . . . . 11 -(2 − 1) = -1
114111, 113eqtr3i 2804 . . . . . . . . . 10 (1 − 2) = -1
115114oveq2i 6987 . . . . . . . . 9 ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1)
116103, 110, 1153eqtri 2806 . . . . . . . 8 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1)
117106, 108negsubi 10765 . . . . . . . 8 ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1)
118116, 117eqtri 2802 . . . . . . 7 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1)
119118oveq1i 6986 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀)
12098, 119eqtr3i 2804 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀)
12194, 120eqtr3i 2804 . . . 4 (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀)
1221, 2, 3ballotlem1 31396 . . . 4 (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀)
123121, 122oveq12i 6988 . . 3 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
12412, 123eqtri 2802 . 2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
125 0le1 10964 . . . . 5 0 ≤ 1
126 0re 10441 . . . . . 6 0 ∈ ℝ
127126, 21, 40letri 10569 . . . . 5 ((0 ≤ 1 ∧ 1 ≤ 𝑀) → 0 ≤ 𝑀)
128125, 37, 127mp2an 679 . . . 4 0 ≤ 𝑀
1292nngt0i 11479 . . . . . 6 0 < 𝑁
13041, 129elrpii 12207 . . . . 5 𝑁 ∈ ℝ+
131 ltaddrp 12243 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑀 < (𝑀 + 𝑁))
13240, 130, 131mp2an 679 . . . 4 𝑀 < (𝑀 + 𝑁)
133 0z 11804 . . . . 5 0 ∈ ℤ
134 elfzm11 12794 . . . . 5 ((0 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁))))
135133, 51, 134mp2an 679 . . . 4 (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁)))
13696, 128, 132, 135mpbir3an 1321 . . 3 𝑀 ∈ (0...((𝑀 + 𝑁) − 1))
137 bcm1n 30274 . . 3 ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)))
138136, 50, 137mp2an 679 . 2 ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))
139 pncan2 10693 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
140104, 105, 139mp2an 679 . . 3 ((𝑀 + 𝑁) − 𝑀) = 𝑁
141140oveq1i 6986 . 2 (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁))
142124, 138, 1413eqtri 2806 1 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833  w3a 1068  wal 1505   = wceq 1507  wex 1742  wcel 2050  {cab 2758  {crab 3092  Vcvv 3415  cin 3828  wss 3829  𝒫 cpw 4422   class class class wbr 4929  cmpt 5008  cfv 6188  (class class class)co 6976  Fincfn 8306  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   < clt 10474  cle 10475  cmin 10670  -cneg 10671   / cdiv 11098  cn 11439  2c2 11495  cz 11793  cuz 12058  +crp 12204  ...cfz 12708  Ccbc 13477  chash 13505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-n0 11708  df-z 11794  df-uz 12059  df-rp 12205  df-fz 12709  df-seq 13185  df-fac 13449  df-bc 13478  df-hash 13506
This theorem is referenced by:  ballotth  31447
  Copyright terms: Public domain W3C validator