| Step | Hyp | Ref
| Expression |
| 1 | | ballotth.m |
. . . . . 6
⊢ 𝑀 ∈ ℕ |
| 2 | | ballotth.n |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
| 3 | | ballotth.o |
. . . . . 6
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| 4 | 1, 2, 3 | ballotlemoex 34488 |
. . . . 5
⊢ 𝑂 ∈ V |
| 5 | | ssrab2 4080 |
. . . . 5
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂 |
| 6 | 4, 5 | elpwi2 5335 |
. . . 4
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 |
| 7 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐})) |
| 8 | 7 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
| 9 | | ballotth.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| 10 | | ovex 7464 |
. . . . 5
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) ∈
V |
| 11 | 8, 9, 10 | fvmpt 7016 |
. . . 4
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
| 12 | 6, 11 | ax-mp 5 |
. . 3
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) |
| 13 | | an32 646 |
. . . . . . . 8
⊢ (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
| 14 | | 2eluzge1 12936 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘1) |
| 15 | | fzss1 13603 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))) |
| 16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) |
| 17 | 16 | sspwi 4612 |
. . . . . . . . . . . 12
⊢ 𝒫
(2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 18 | 17 | sseli 3979 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
| 19 | | 1lt2 12437 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
2 |
| 20 | | 1re 11261 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
| 21 | | 2re 12340 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
| 22 | 20, 21 | ltnlei 11382 |
. . . . . . . . . . . . . . . 16
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
| 23 | 19, 22 | mpbi 230 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
≤ 1 |
| 24 | | elfzle1 13567 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(2...(𝑀 + 𝑁)) → 2 ≤ 1) |
| 25 | 23, 24 | mto 197 |
. . . . . . . . . . . . . 14
⊢ ¬ 1
∈ (2...(𝑀 + 𝑁)) |
| 26 | | elelpwi 4610 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁))) |
| 27 | 25, 26 | mto 197 |
. . . . . . . . . . . . 13
⊢ ¬ (1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
| 28 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)) |
| 29 | 27, 28 | mtbi 322 |
. . . . . . . . . . . 12
⊢ ¬
(𝑐 ∈ 𝒫
(2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐) |
| 30 | 29 | imnani 400 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐) |
| 31 | 18, 30 | jca 511 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
| 32 | | ssin 4239 |
. . . . . . . . . . . 12
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})) |
| 33 | | 1le2 12475 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≤
2 |
| 34 | | 1p1e2 12391 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1) =
2 |
| 35 | | nnge1 12294 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ ℕ → 1 ≤
𝑀) |
| 36 | 1, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑀 |
| 37 | | nnge1 12294 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 1 ≤
𝑁) |
| 38 | 2, 37 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑁 |
| 39 | 1 | nnrei 12275 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑀 ∈ ℝ |
| 40 | 2 | nnrei 12275 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑁 ∈ ℝ |
| 41 | 20, 20, 39, 40 | le2addi 11826 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 ≤
𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁)) |
| 42 | 36, 38, 41 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1)
≤ (𝑀 + 𝑁) |
| 43 | 34, 42 | eqbrtrri 5166 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≤
(𝑀 + 𝑁) |
| 44 | 39, 40 | readdcli 11276 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℝ |
| 45 | 20, 21, 44 | letri 11390 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1 ≤
2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁)) |
| 46 | 33, 43, 45 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ≤
(𝑀 + 𝑁) |
| 47 | | 1z 12647 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
| 48 | | nnaddcl 12289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 49 | 1, 2, 48 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℕ |
| 50 | 49 | nnzi 12641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 + 𝑁) ∈ ℤ |
| 51 | | eluz 12892 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁))) |
| 52 | 47, 50, 51 | mp2an 692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁)) |
| 53 | 46, 52 | mpbir 231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘1) |
| 54 | | elfzp12 13643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
→ (𝑖 ∈
(1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))) |
| 55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
| 56 | 55 | biimpi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
| 57 | 56 | orcanai 1005 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))) |
| 58 | 34 | oveq1i 7441 |
. . . . . . . . . . . . . . . 16
⊢ ((1 +
1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁)) |
| 59 | 57, 58 | eleqtrdi 2851 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁))) |
| 60 | 59 | ss2abi 4067 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} |
| 61 | | inab 4309 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} |
| 62 | | abid2 2879 |
. . . . . . . . . . . . . . . 16
⊢ {𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁)) |
| 63 | 62 | ineq1i 4216 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
| 64 | 61, 63 | eqtr3i 2767 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
| 65 | | abid2 2879 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁)) |
| 66 | 60, 64, 65 | 3sstr3i 4034 |
. . . . . . . . . . . . 13
⊢
((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁)) |
| 67 | | sstr 3992 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
| 68 | 66, 67 | mpan2 691 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
| 69 | 32, 68 | sylbi 217 |
. . . . . . . . . . 11
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
| 70 | | velpw 4605 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁))) |
| 71 | | ssab 4064 |
. . . . . . . . . . . . 13
⊢ (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1)) |
| 72 | | df-ex 1780 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 73 | 72 | bicomi 224 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 74 | 73 | con1bii 356 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 75 | | dfclel 2817 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 76 | 75 | notbii 320 |
. . . . . . . . . . . . . 14
⊢ (¬ 1
∈ 𝑐 ↔ ¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 77 | | imnang 1842 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
| 78 | | ancom 460 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
| 79 | 78 | notbii 320 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
| 80 | 79 | albii 1819 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
| 81 | 77, 80 | bitr4i 278 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
| 82 | 74, 76, 81 | 3bitr4ri 304 |
. . . . . . . . . . . . 13
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐) |
| 83 | 71, 82 | bitr2i 276 |
. . . . . . . . . . . 12
⊢ (¬ 1
∈ 𝑐 ↔ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) |
| 84 | 70, 83 | anbi12i 628 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})) |
| 85 | | velpw 4605 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
| 86 | 69, 84, 85 | 3imtr4i 292 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
| 87 | 31, 86 | impbii 209 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
| 88 | 87 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀)) |
| 89 | 3 | reqabi 3460 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀)) |
| 90 | 89 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
| 91 | 13, 88, 90 | 3bitr4i 303 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐)) |
| 92 | 91 | rabbia2 3439 |
. . . . . 6
⊢ {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} |
| 93 | 92 | fveq2i 6909 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) |
| 94 | | fzfi 14013 |
. . . . . . 7
⊢
(2...(𝑀 + 𝑁)) ∈ Fin |
| 95 | 1 | nnzi 12641 |
. . . . . . 7
⊢ 𝑀 ∈ ℤ |
| 96 | | hashbc 14492 |
. . . . . . 7
⊢
(((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) →
((♯‘(2...(𝑀 +
𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})) |
| 97 | 94, 95, 96 | mp2an 692 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) |
| 98 | | 2z 12649 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
| 99 | 98 | eluz1i 12886 |
. . . . . . . . . . 11
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤
(𝑀 + 𝑁))) |
| 100 | 50, 43, 99 | mpbir2an 711 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘2) |
| 101 | | hashfz 14466 |
. . . . . . . . . 10
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
→ (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)) |
| 102 | 100, 101 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1) |
| 103 | 1 | nncni 12276 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ ℂ |
| 104 | 2 | nncni 12276 |
. . . . . . . . . . 11
⊢ 𝑁 ∈ ℂ |
| 105 | 103, 104 | addcli 11267 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℂ |
| 106 | | 2cn 12341 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
| 107 | | ax-1cn 11213 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 108 | | subadd23 11520 |
. . . . . . . . . 10
⊢ (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ
∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))) |
| 109 | 105, 106,
107, 108 | mp3an 1463 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)) |
| 110 | 106, 107 | negsubdi2i 11595 |
. . . . . . . . . . 11
⊢ -(2
− 1) = (1 − 2) |
| 111 | | 2m1e1 12392 |
. . . . . . . . . . . 12
⊢ (2
− 1) = 1 |
| 112 | 111 | negeqi 11501 |
. . . . . . . . . . 11
⊢ -(2
− 1) = -1 |
| 113 | 110, 112 | eqtr3i 2767 |
. . . . . . . . . 10
⊢ (1
− 2) = -1 |
| 114 | 113 | oveq2i 7442 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1) |
| 115 | 102, 109,
114 | 3eqtri 2769 |
. . . . . . . 8
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1) |
| 116 | 105, 107 | negsubi 11587 |
. . . . . . . 8
⊢ ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1) |
| 117 | 115, 116 | eqtri 2765 |
. . . . . . 7
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1) |
| 118 | 117 | oveq1i 7441 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀) |
| 119 | 97, 118 | eqtr3i 2767 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀) |
| 120 | 93, 119 | eqtr3i 2767 |
. . . 4
⊢
(♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀) |
| 121 | 1, 2, 3 | ballotlem1 34489 |
. . . 4
⊢
(♯‘𝑂) =
((𝑀 + 𝑁)C𝑀) |
| 122 | 120, 121 | oveq12i 7443 |
. . 3
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) =
((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
| 123 | 12, 122 | eqtri 2765 |
. 2
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
| 124 | | 0le1 11786 |
. . . . 5
⊢ 0 ≤
1 |
| 125 | | 0re 11263 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 126 | 125, 20, 39 | letri 11390 |
. . . . 5
⊢ ((0 ≤
1 ∧ 1 ≤ 𝑀) → 0
≤ 𝑀) |
| 127 | 124, 36, 126 | mp2an 692 |
. . . 4
⊢ 0 ≤
𝑀 |
| 128 | 2 | nngt0i 12305 |
. . . . . 6
⊢ 0 <
𝑁 |
| 129 | 40, 128 | elrpii 13037 |
. . . . 5
⊢ 𝑁 ∈
ℝ+ |
| 130 | | ltaddrp 13072 |
. . . . 5
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ 𝑀 < (𝑀 + 𝑁)) |
| 131 | 39, 129, 130 | mp2an 692 |
. . . 4
⊢ 𝑀 < (𝑀 + 𝑁) |
| 132 | | 0z 12624 |
. . . . 5
⊢ 0 ∈
ℤ |
| 133 | | elfzm11 13635 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
(𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁)))) |
| 134 | 132, 50, 133 | mp2an 692 |
. . . 4
⊢ (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁))) |
| 135 | 95, 127, 131, 134 | mpbir3an 1342 |
. . 3
⊢ 𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) |
| 136 | | bcm1n 32797 |
. . 3
⊢ ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))) |
| 137 | 135, 49, 136 | mp2an 692 |
. 2
⊢ ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) |
| 138 | | pncan2 11515 |
. . . 4
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
| 139 | 103, 104,
138 | mp2an 692 |
. . 3
⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
| 140 | 139 | oveq1i 7441 |
. 2
⊢ (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁)) |
| 141 | 123, 137,
140 | 3eqtri 2769 |
1
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) |