Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   GIF version

Theorem ballotlem2 32464
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
Assertion
Ref Expression
ballotlem2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem ballotlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
41, 2, 3ballotlemoex 32461 . . . . 5 𝑂 ∈ V
5 ssrab2 4014 . . . . 5 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
64, 5elpwi2 5271 . . . 4 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
7 fveq2 6783 . . . . . 6 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
87oveq1d 7299 . . . . 5 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
9 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ovex 7317 . . . . 5 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) ∈ V
118, 9, 10fvmpt 6884 . . . 4 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
126, 11ax-mp 5 . . 3 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
13 an32 643 . . . . . . . 8 (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
14 2eluzge1 12643 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
15 fzss1 13304 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))
1716sspwi 4548 . . . . . . . . . . . 12 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))
1817sseli 3918 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)))
19 1lt2 12153 . . . . . . . . . . . . . . . 16 1 < 2
20 1re 10984 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
21 2re 12056 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2220, 21ltnlei 11105 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
2319, 22mpbi 229 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
24 elfzle1 13268 . . . . . . . . . . . . . . 15 (1 ∈ (2...(𝑀 + 𝑁)) → 2 ≤ 1)
2523, 24mto 196 . . . . . . . . . . . . . 14 ¬ 1 ∈ (2...(𝑀 + 𝑁))
26 elelpwi 4546 . . . . . . . . . . . . . 14 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁)))
2725, 26mto 196 . . . . . . . . . . . . 13 ¬ (1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
28 ancom 461 . . . . . . . . . . . . 13 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐))
2927, 28mtbi 322 . . . . . . . . . . . 12 ¬ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)
3029imnani 401 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐)
3118, 30jca 512 . . . . . . . . . 10 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
32 ssin 4165 . . . . . . . . . . . 12 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}))
33 1le2 12191 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
34 1p1e2 12107 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
35 nnge1 12010 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
361, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑀
37 nnge1 12010 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑁
391nnrei 11991 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 ∈ ℝ
402nnrei 11991 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ ℝ
4120, 20, 39, 40le2addi 11547 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ≤ 𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁))
4236, 38, 41mp2an 689 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) ≤ (𝑀 + 𝑁)
4334, 42eqbrtrri 5098 . . . . . . . . . . . . . . . . . . . . 21 2 ≤ (𝑀 + 𝑁)
4439, 40readdcli 10999 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℝ
4520, 21, 44letri 11113 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁))
4633, 43, 45mp2an 689 . . . . . . . . . . . . . . . . . . . 20 1 ≤ (𝑀 + 𝑁)
47 1z 12359 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
48 nnaddcl 12005 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
491, 2, 48mp2an 689 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℕ
5049nnzi 12353 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 + 𝑁) ∈ ℤ
51 eluz 12605 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁)))
5247, 50, 51mp2an 689 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁))
5346, 52mpbir 230 . . . . . . . . . . . . . . . . . . 19 (𝑀 + 𝑁) ∈ (ℤ‘1)
54 elfzp12 13344 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 𝑁) ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5655biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5756orcanai 1000 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))
5834oveq1i 7294 . . . . . . . . . . . . . . . 16 ((1 + 1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁))
5957, 58eleqtrdi 2850 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁)))
6059ss2abi 4001 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))}
61 inab 4234 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)}
62 abid2 2883 . . . . . . . . . . . . . . . 16 {𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁))
6362ineq1i 4143 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
6461, 63eqtr3i 2769 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
65 abid2 2883 . . . . . . . . . . . . . 14 {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁))
6660, 64, 653sstr3i 3964 . . . . . . . . . . . . 13 ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))
67 sstr 3930 . . . . . . . . . . . . 13 ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6866, 67mpan2 688 . . . . . . . . . . . 12 (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6932, 68sylbi 216 . . . . . . . . . . 11 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
70 velpw 4539 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁)))
71 ssab 3996 . . . . . . . . . . . . 13 (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1))
72 df-ex 1783 . . . . . . . . . . . . . . . 16 (∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
7372bicomi 223 . . . . . . . . . . . . . . 15 (¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7473con1bii 357 . . . . . . . . . . . . . 14 (¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
75 dfclel 2818 . . . . . . . . . . . . . . 15 (1 ∈ 𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7675notbii 320 . . . . . . . . . . . . . 14 (¬ 1 ∈ 𝑐 ↔ ¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
77 imnang 1845 . . . . . . . . . . . . . . 15 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
78 ancom 461 . . . . . . . . . . . . . . . . 17 ((𝑖 = 1 ∧ 𝑖𝑐) ↔ (𝑖𝑐𝑖 = 1))
7978notbii 320 . . . . . . . . . . . . . . . 16 (¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ (𝑖𝑐𝑖 = 1))
8079albii 1822 . . . . . . . . . . . . . . 15 (∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
8177, 80bitr4i 277 . . . . . . . . . . . . . 14 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
8274, 76, 813bitr4ri 304 . . . . . . . . . . . . 13 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐)
8371, 82bitr2i 275 . . . . . . . . . . . 12 (¬ 1 ∈ 𝑐𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})
8470, 83anbi12i 627 . . . . . . . . . . 11 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}))
85 velpw 4539 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁)))
8669, 84, 853imtr4i 292 . . . . . . . . . 10 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
8731, 86impbii 208 . . . . . . . . 9 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
8887anbi1i 624 . . . . . . . 8 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀))
893rabeq2i 3423 . . . . . . . . 9 (𝑐𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀))
9089anbi1i 624 . . . . . . . 8 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
9113, 88, 903bitr4i 303 . . . . . . 7 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
9291rabbia2 3413 . . . . . 6 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
9392fveq2i 6786 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
94 fzfi 13701 . . . . . . 7 (2...(𝑀 + 𝑁)) ∈ Fin
951nnzi 12353 . . . . . . 7 𝑀 ∈ ℤ
96 hashbc 14174 . . . . . . 7 (((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}))
9794, 95, 96mp2an 689 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})
98 2z 12361 . . . . . . . . . . . 12 2 ∈ ℤ
9998eluz1i 12599 . . . . . . . . . . 11 ((𝑀 + 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤ (𝑀 + 𝑁)))
10050, 43, 99mpbir2an 708 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ (ℤ‘2)
101 hashfz 14151 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ (ℤ‘2) → (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1))
102100, 101ax-mp 5 . . . . . . . . 9 (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)
1031nncni 11992 . . . . . . . . . . 11 𝑀 ∈ ℂ
1042nncni 11992 . . . . . . . . . . 11 𝑁 ∈ ℂ
105103, 104addcli 10990 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℂ
106 2cn 12057 . . . . . . . . . 10 2 ∈ ℂ
107 ax-1cn 10938 . . . . . . . . . 10 1 ∈ ℂ
108 subadd23 11242 . . . . . . . . . 10 (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)))
109105, 106, 107, 108mp3an 1460 . . . . . . . . 9 (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))
110106, 107negsubdi2i 11316 . . . . . . . . . . 11 -(2 − 1) = (1 − 2)
111 2m1e1 12108 . . . . . . . . . . . 12 (2 − 1) = 1
112111negeqi 11223 . . . . . . . . . . 11 -(2 − 1) = -1
113110, 112eqtr3i 2769 . . . . . . . . . 10 (1 − 2) = -1
114113oveq2i 7295 . . . . . . . . 9 ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1)
115102, 109, 1143eqtri 2771 . . . . . . . 8 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1)
116105, 107negsubi 11308 . . . . . . . 8 ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1)
117115, 116eqtri 2767 . . . . . . 7 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1)
118117oveq1i 7294 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀)
11997, 118eqtr3i 2769 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀)
12093, 119eqtr3i 2769 . . . 4 (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀)
1211, 2, 3ballotlem1 32462 . . . 4 (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀)
122120, 121oveq12i 7296 . . 3 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
12312, 122eqtri 2767 . 2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
124 0le1 11507 . . . . 5 0 ≤ 1
125 0re 10986 . . . . . 6 0 ∈ ℝ
126125, 20, 39letri 11113 . . . . 5 ((0 ≤ 1 ∧ 1 ≤ 𝑀) → 0 ≤ 𝑀)
127124, 36, 126mp2an 689 . . . 4 0 ≤ 𝑀
1282nngt0i 12021 . . . . . 6 0 < 𝑁
12940, 128elrpii 12742 . . . . 5 𝑁 ∈ ℝ+
130 ltaddrp 12776 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑀 < (𝑀 + 𝑁))
13139, 129, 130mp2an 689 . . . 4 𝑀 < (𝑀 + 𝑁)
132 0z 12339 . . . . 5 0 ∈ ℤ
133 elfzm11 13336 . . . . 5 ((0 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁))))
134132, 50, 133mp2an 689 . . . 4 (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁)))
13595, 127, 131, 134mpbir3an 1340 . . 3 𝑀 ∈ (0...((𝑀 + 𝑁) − 1))
136 bcm1n 31125 . . 3 ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)))
137135, 49, 136mp2an 689 . 2 ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))
138 pncan2 11237 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
139103, 104, 138mp2an 689 . . 3 ((𝑀 + 𝑁) − 𝑀) = 𝑁
140139oveq1i 7294 . 2 (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁))
141123, 137, 1403eqtri 2771 1 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2107  {cab 2716  {crab 3069  Vcvv 3433  cin 3887  wss 3888  𝒫 cpw 4534   class class class wbr 5075  cmpt 5158  cfv 6437  (class class class)co 7284  Fincfn 8742  cc 10878  cr 10879  0cc0 10880  1c1 10881   + caddc 10883   < clt 11018  cle 11019  cmin 11214  -cneg 11215   / cdiv 11641  cn 11982  2c2 12037  cz 12328  cuz 12591  +crp 12739  ...cfz 13248  Ccbc 14025  chash 14053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956  ax-pre-mulgt0 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rmo 3072  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-int 4881  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-riota 7241  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-1st 7840  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-1o 8306  df-oadd 8310  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-fin 8746  df-dju 9668  df-card 9706  df-pnf 11020  df-mnf 11021  df-xr 11022  df-ltxr 11023  df-le 11024  df-sub 11216  df-neg 11217  df-div 11642  df-nn 11983  df-2 12045  df-n0 12243  df-z 12329  df-uz 12592  df-rp 12740  df-fz 13249  df-seq 13731  df-fac 13997  df-bc 14026  df-hash 14054
This theorem is referenced by:  ballotth  32513
  Copyright terms: Public domain W3C validator