Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   GIF version

Theorem ballotlem2 34453
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
Assertion
Ref Expression
ballotlem2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem ballotlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
41, 2, 3ballotlemoex 34450 . . . . 5 𝑂 ∈ V
5 ssrab2 4039 . . . . 5 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
64, 5elpwi2 5285 . . . 4 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
7 fveq2 6840 . . . . . 6 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
87oveq1d 7384 . . . . 5 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
9 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ovex 7402 . . . . 5 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) ∈ V
118, 9, 10fvmpt 6950 . . . 4 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
126, 11ax-mp 5 . . 3 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
13 an32 646 . . . . . . . 8 (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
14 2eluzge1 12817 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
15 fzss1 13500 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))
1716sspwi 4571 . . . . . . . . . . . 12 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))
1817sseli 3939 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)))
19 1lt2 12328 . . . . . . . . . . . . . . . 16 1 < 2
20 1re 11150 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
21 2re 12236 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2220, 21ltnlei 11271 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
2319, 22mpbi 230 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
24 elfzle1 13464 . . . . . . . . . . . . . . 15 (1 ∈ (2...(𝑀 + 𝑁)) → 2 ≤ 1)
2523, 24mto 197 . . . . . . . . . . . . . 14 ¬ 1 ∈ (2...(𝑀 + 𝑁))
26 elelpwi 4569 . . . . . . . . . . . . . 14 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁)))
2725, 26mto 197 . . . . . . . . . . . . 13 ¬ (1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
28 ancom 460 . . . . . . . . . . . . 13 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐))
2927, 28mtbi 322 . . . . . . . . . . . 12 ¬ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)
3029imnani 400 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐)
3118, 30jca 511 . . . . . . . . . 10 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
32 ssin 4198 . . . . . . . . . . . 12 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}))
33 1le2 12366 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
34 1p1e2 12282 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
35 nnge1 12190 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
361, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑀
37 nnge1 12190 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑁
391nnrei 12171 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 ∈ ℝ
402nnrei 12171 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ ℝ
4120, 20, 39, 40le2addi 11717 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ≤ 𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁))
4236, 38, 41mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) ≤ (𝑀 + 𝑁)
4334, 42eqbrtrri 5125 . . . . . . . . . . . . . . . . . . . . 21 2 ≤ (𝑀 + 𝑁)
4439, 40readdcli 11165 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℝ
4520, 21, 44letri 11279 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁))
4633, 43, 45mp2an 692 . . . . . . . . . . . . . . . . . . . 20 1 ≤ (𝑀 + 𝑁)
47 1z 12539 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
48 nnaddcl 12185 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
491, 2, 48mp2an 692 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℕ
5049nnzi 12533 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 + 𝑁) ∈ ℤ
51 eluz 12783 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁)))
5247, 50, 51mp2an 692 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁))
5346, 52mpbir 231 . . . . . . . . . . . . . . . . . . 19 (𝑀 + 𝑁) ∈ (ℤ‘1)
54 elfzp12 13540 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 𝑁) ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5655biimpi 216 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5756orcanai 1004 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))
5834oveq1i 7379 . . . . . . . . . . . . . . . 16 ((1 + 1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁))
5957, 58eleqtrdi 2838 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁)))
6059ss2abi 4027 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))}
61 inab 4268 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)}
62 abid2 2865 . . . . . . . . . . . . . . . 16 {𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁))
6362ineq1i 4175 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
6461, 63eqtr3i 2754 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
65 abid2 2865 . . . . . . . . . . . . . 14 {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁))
6660, 64, 653sstr3i 3994 . . . . . . . . . . . . 13 ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))
67 sstr 3952 . . . . . . . . . . . . 13 ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6866, 67mpan2 691 . . . . . . . . . . . 12 (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6932, 68sylbi 217 . . . . . . . . . . 11 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
70 velpw 4564 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁)))
71 ssab 4024 . . . . . . . . . . . . 13 (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1))
72 df-ex 1780 . . . . . . . . . . . . . . . 16 (∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
7372bicomi 224 . . . . . . . . . . . . . . 15 (¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7473con1bii 356 . . . . . . . . . . . . . 14 (¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
75 dfclel 2804 . . . . . . . . . . . . . . 15 (1 ∈ 𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7675notbii 320 . . . . . . . . . . . . . 14 (¬ 1 ∈ 𝑐 ↔ ¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
77 imnang 1842 . . . . . . . . . . . . . . 15 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
78 ancom 460 . . . . . . . . . . . . . . . . 17 ((𝑖 = 1 ∧ 𝑖𝑐) ↔ (𝑖𝑐𝑖 = 1))
7978notbii 320 . . . . . . . . . . . . . . . 16 (¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ (𝑖𝑐𝑖 = 1))
8079albii 1819 . . . . . . . . . . . . . . 15 (∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
8177, 80bitr4i 278 . . . . . . . . . . . . . 14 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
8274, 76, 813bitr4ri 304 . . . . . . . . . . . . 13 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐)
8371, 82bitr2i 276 . . . . . . . . . . . 12 (¬ 1 ∈ 𝑐𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})
8470, 83anbi12i 628 . . . . . . . . . . 11 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}))
85 velpw 4564 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁)))
8669, 84, 853imtr4i 292 . . . . . . . . . 10 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
8731, 86impbii 209 . . . . . . . . 9 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
8887anbi1i 624 . . . . . . . 8 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀))
893reqabi 3426 . . . . . . . . 9 (𝑐𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀))
9089anbi1i 624 . . . . . . . 8 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
9113, 88, 903bitr4i 303 . . . . . . 7 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
9291rabbia2 3405 . . . . . 6 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
9392fveq2i 6843 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
94 fzfi 13913 . . . . . . 7 (2...(𝑀 + 𝑁)) ∈ Fin
951nnzi 12533 . . . . . . 7 𝑀 ∈ ℤ
96 hashbc 14394 . . . . . . 7 (((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}))
9794, 95, 96mp2an 692 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})
98 2z 12541 . . . . . . . . . . . 12 2 ∈ ℤ
9998eluz1i 12777 . . . . . . . . . . 11 ((𝑀 + 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤ (𝑀 + 𝑁)))
10050, 43, 99mpbir2an 711 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ (ℤ‘2)
101 hashfz 14368 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ (ℤ‘2) → (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1))
102100, 101ax-mp 5 . . . . . . . . 9 (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)
1031nncni 12172 . . . . . . . . . . 11 𝑀 ∈ ℂ
1042nncni 12172 . . . . . . . . . . 11 𝑁 ∈ ℂ
105103, 104addcli 11156 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℂ
106 2cn 12237 . . . . . . . . . 10 2 ∈ ℂ
107 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
108 subadd23 11409 . . . . . . . . . 10 (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)))
109105, 106, 107, 108mp3an 1463 . . . . . . . . 9 (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))
110106, 107negsubdi2i 11484 . . . . . . . . . . 11 -(2 − 1) = (1 − 2)
111 2m1e1 12283 . . . . . . . . . . . 12 (2 − 1) = 1
112111negeqi 11390 . . . . . . . . . . 11 -(2 − 1) = -1
113110, 112eqtr3i 2754 . . . . . . . . . 10 (1 − 2) = -1
114113oveq2i 7380 . . . . . . . . 9 ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1)
115102, 109, 1143eqtri 2756 . . . . . . . 8 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1)
116105, 107negsubi 11476 . . . . . . . 8 ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1)
117115, 116eqtri 2752 . . . . . . 7 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1)
118117oveq1i 7379 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀)
11997, 118eqtr3i 2754 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀)
12093, 119eqtr3i 2754 . . . 4 (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀)
1211, 2, 3ballotlem1 34451 . . . 4 (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀)
122120, 121oveq12i 7381 . . 3 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
12312, 122eqtri 2752 . 2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
124 0le1 11677 . . . . 5 0 ≤ 1
125 0re 11152 . . . . . 6 0 ∈ ℝ
126125, 20, 39letri 11279 . . . . 5 ((0 ≤ 1 ∧ 1 ≤ 𝑀) → 0 ≤ 𝑀)
127124, 36, 126mp2an 692 . . . 4 0 ≤ 𝑀
1282nngt0i 12201 . . . . . 6 0 < 𝑁
12940, 128elrpii 12930 . . . . 5 𝑁 ∈ ℝ+
130 ltaddrp 12966 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑀 < (𝑀 + 𝑁))
13139, 129, 130mp2an 692 . . . 4 𝑀 < (𝑀 + 𝑁)
132 0z 12516 . . . . 5 0 ∈ ℤ
133 elfzm11 13532 . . . . 5 ((0 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁))))
134132, 50, 133mp2an 692 . . . 4 (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁)))
13595, 127, 131, 134mpbir3an 1342 . . 3 𝑀 ∈ (0...((𝑀 + 𝑁) − 1))
136 bcm1n 32691 . . 3 ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)))
137135, 49, 136mp2an 692 . 2 ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))
138 pncan2 11404 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
139103, 104, 138mp2an 692 . . 3 ((𝑀 + 𝑁) − 𝑀) = 𝑁
140139oveq1i 7379 . 2 (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁))
141123, 137, 1403eqtri 2756 1 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2707  {crab 3402  Vcvv 3444  cin 3910  wss 3911  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  cz 12505  cuz 12769  +crp 12927  ...cfz 13444  Ccbc 14243  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-fac 14215  df-bc 14244  df-hash 14272
This theorem is referenced by:  ballotth  34502
  Copyright terms: Public domain W3C validator