Step | Hyp | Ref
| Expression |
1 | | ballotth.m |
. . . . . 6
⊢ 𝑀 ∈ ℕ |
2 | | ballotth.n |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
3 | | ballotth.o |
. . . . . 6
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
4 | 1, 2, 3 | ballotlemoex 31395 |
. . . . 5
⊢ 𝑂 ∈ V |
5 | | ssrab2 3946 |
. . . . 5
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂 |
6 | 4, 5 | elpwi2 5105 |
. . . 4
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 |
7 | | fveq2 6499 |
. . . . . 6
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐})) |
8 | 7 | oveq1d 6991 |
. . . . 5
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
9 | | ballotth.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
10 | | ovex 7008 |
. . . . 5
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) ∈
V |
11 | 8, 9, 10 | fvmpt 6595 |
. . . 4
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
12 | 6, 11 | ax-mp 5 |
. . 3
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) |
13 | | an32 633 |
. . . . . . . 8
⊢ (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
14 | | 2eluzge1 12108 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘1) |
15 | | fzss1 12762 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) |
17 | | sspwb 5198 |
. . . . . . . . . . . . 13
⊢
((2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) ↔ 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))) |
18 | 16, 17 | mpbi 222 |
. . . . . . . . . . . 12
⊢ 𝒫
(2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
19 | 18 | sseli 3854 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
20 | | 1lt2 11618 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
2 |
21 | | 1re 10439 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
22 | | 2re 11514 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
23 | 21, 22 | ltnlei 10561 |
. . . . . . . . . . . . . . . 16
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
24 | 20, 23 | mpbi 222 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
≤ 1 |
25 | | elfzle1 12726 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(2...(𝑀 + 𝑁)) → 2 ≤ 1) |
26 | 24, 25 | mto 189 |
. . . . . . . . . . . . . 14
⊢ ¬ 1
∈ (2...(𝑀 + 𝑁)) |
27 | | elelpwi 4435 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁))) |
28 | 26, 27 | mto 189 |
. . . . . . . . . . . . 13
⊢ ¬ (1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
29 | | ancom 453 |
. . . . . . . . . . . . 13
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)) |
30 | 28, 29 | mtbi 314 |
. . . . . . . . . . . 12
⊢ ¬
(𝑐 ∈ 𝒫
(2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐) |
31 | 30 | imnani 392 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐) |
32 | 19, 31 | jca 504 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
33 | | ssin 4094 |
. . . . . . . . . . . 12
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})) |
34 | | 1le2 11656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≤
2 |
35 | | 1p1e2 11572 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1) =
2 |
36 | | nnge1 11468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ ℕ → 1 ≤
𝑀) |
37 | 1, 36 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑀 |
38 | | nnge1 11468 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 1 ≤
𝑁) |
39 | 2, 38 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑁 |
40 | 1 | nnrei 11449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑀 ∈ ℝ |
41 | 2 | nnrei 11449 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑁 ∈ ℝ |
42 | 21, 21, 40, 41 | le2addi 11004 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 ≤
𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁)) |
43 | 37, 39, 42 | mp2an 679 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1)
≤ (𝑀 + 𝑁) |
44 | 35, 43 | eqbrtrri 4952 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≤
(𝑀 + 𝑁) |
45 | 40, 41 | readdcli 10455 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℝ |
46 | 21, 22, 45 | letri 10569 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1 ≤
2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁)) |
47 | 34, 44, 46 | mp2an 679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ≤
(𝑀 + 𝑁) |
48 | | 1z 11825 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
49 | | nnaddcl 11463 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
50 | 1, 2, 49 | mp2an 679 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℕ |
51 | 50 | nnzi 11819 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 + 𝑁) ∈ ℤ |
52 | | eluz 12072 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁))) |
53 | 48, 51, 52 | mp2an 679 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁)) |
54 | 47, 53 | mpbir 223 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘1) |
55 | | elfzp12 12802 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
→ (𝑖 ∈
(1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
57 | 56 | biimpi 208 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
58 | 57 | orcanai 985 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))) |
59 | 35 | oveq1i 6986 |
. . . . . . . . . . . . . . . 16
⊢ ((1 +
1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁)) |
60 | 58, 59 | syl6eleq 2876 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁))) |
61 | 60 | ss2abi 3933 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} |
62 | | inab 4158 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} |
63 | | abid2 2909 |
. . . . . . . . . . . . . . . 16
⊢ {𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁)) |
64 | 63 | ineq1i 4072 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
65 | 62, 64 | eqtr3i 2804 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
66 | | abid2 2909 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁)) |
67 | 61, 65, 66 | 3sstr3i 3899 |
. . . . . . . . . . . . 13
⊢
((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁)) |
68 | | sstr 3866 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
69 | 67, 68 | mpan2 678 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
70 | 33, 69 | sylbi 209 |
. . . . . . . . . . 11
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
71 | | selpw 4429 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁))) |
72 | | ssab 3931 |
. . . . . . . . . . . . 13
⊢ (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1)) |
73 | | df-ex 1743 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
74 | 73 | bicomi 216 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
75 | 74 | con1bii 349 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
76 | | dfclel 2847 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
77 | 76 | notbii 312 |
. . . . . . . . . . . . . 14
⊢ (¬ 1
∈ 𝑐 ↔ ¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
78 | | imnang 1804 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
79 | | ancom 453 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
80 | 79 | notbii 312 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
81 | 80 | albii 1782 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
82 | 78, 81 | bitr4i 270 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
83 | 75, 77, 82 | 3bitr4ri 296 |
. . . . . . . . . . . . 13
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐) |
84 | 72, 83 | bitr2i 268 |
. . . . . . . . . . . 12
⊢ (¬ 1
∈ 𝑐 ↔ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) |
85 | 71, 84 | anbi12i 617 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})) |
86 | | selpw 4429 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
87 | 70, 85, 86 | 3imtr4i 284 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
88 | 32, 87 | impbii 201 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
89 | 88 | anbi1i 614 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀)) |
90 | 3 | rabeq2i 3410 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀)) |
91 | 90 | anbi1i 614 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
92 | 13, 89, 91 | 3bitr4i 295 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐)) |
93 | 92 | rabbia2 3401 |
. . . . . 6
⊢ {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} |
94 | 93 | fveq2i 6502 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) |
95 | | fzfi 13155 |
. . . . . . 7
⊢
(2...(𝑀 + 𝑁)) ∈ Fin |
96 | 1 | nnzi 11819 |
. . . . . . 7
⊢ 𝑀 ∈ ℤ |
97 | | hashbc 13624 |
. . . . . . 7
⊢
(((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) →
((♯‘(2...(𝑀 +
𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})) |
98 | 95, 96, 97 | mp2an 679 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) |
99 | | 2z 11827 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
100 | 99 | eluz1i 12066 |
. . . . . . . . . . 11
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤
(𝑀 + 𝑁))) |
101 | 51, 44, 100 | mpbir2an 698 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘2) |
102 | | hashfz 13601 |
. . . . . . . . . 10
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
→ (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)) |
103 | 101, 102 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1) |
104 | 1 | nncni 11450 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ ℂ |
105 | 2 | nncni 11450 |
. . . . . . . . . . 11
⊢ 𝑁 ∈ ℂ |
106 | 104, 105 | addcli 10446 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℂ |
107 | | 2cn 11515 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
108 | | ax-1cn 10393 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
109 | | subadd23 10699 |
. . . . . . . . . 10
⊢ (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ
∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))) |
110 | 106, 107,
108, 109 | mp3an 1440 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)) |
111 | 107, 108 | negsubdi2i 10773 |
. . . . . . . . . . 11
⊢ -(2
− 1) = (1 − 2) |
112 | | 2m1e1 11573 |
. . . . . . . . . . . 12
⊢ (2
− 1) = 1 |
113 | 112 | negeqi 10679 |
. . . . . . . . . . 11
⊢ -(2
− 1) = -1 |
114 | 111, 113 | eqtr3i 2804 |
. . . . . . . . . 10
⊢ (1
− 2) = -1 |
115 | 114 | oveq2i 6987 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1) |
116 | 103, 110,
115 | 3eqtri 2806 |
. . . . . . . 8
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1) |
117 | 106, 108 | negsubi 10765 |
. . . . . . . 8
⊢ ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1) |
118 | 116, 117 | eqtri 2802 |
. . . . . . 7
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1) |
119 | 118 | oveq1i 6986 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀) |
120 | 98, 119 | eqtr3i 2804 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀) |
121 | 94, 120 | eqtr3i 2804 |
. . . 4
⊢
(♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀) |
122 | 1, 2, 3 | ballotlem1 31396 |
. . . 4
⊢
(♯‘𝑂) =
((𝑀 + 𝑁)C𝑀) |
123 | 121, 122 | oveq12i 6988 |
. . 3
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) =
((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
124 | 12, 123 | eqtri 2802 |
. 2
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
125 | | 0le1 10964 |
. . . . 5
⊢ 0 ≤
1 |
126 | | 0re 10441 |
. . . . . 6
⊢ 0 ∈
ℝ |
127 | 126, 21, 40 | letri 10569 |
. . . . 5
⊢ ((0 ≤
1 ∧ 1 ≤ 𝑀) → 0
≤ 𝑀) |
128 | 125, 37, 127 | mp2an 679 |
. . . 4
⊢ 0 ≤
𝑀 |
129 | 2 | nngt0i 11479 |
. . . . . 6
⊢ 0 <
𝑁 |
130 | 41, 129 | elrpii 12207 |
. . . . 5
⊢ 𝑁 ∈
ℝ+ |
131 | | ltaddrp 12243 |
. . . . 5
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ 𝑀 < (𝑀 + 𝑁)) |
132 | 40, 130, 131 | mp2an 679 |
. . . 4
⊢ 𝑀 < (𝑀 + 𝑁) |
133 | | 0z 11804 |
. . . . 5
⊢ 0 ∈
ℤ |
134 | | elfzm11 12794 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
(𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁)))) |
135 | 133, 51, 134 | mp2an 679 |
. . . 4
⊢ (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁))) |
136 | 96, 128, 132, 135 | mpbir3an 1321 |
. . 3
⊢ 𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) |
137 | | bcm1n 30274 |
. . 3
⊢ ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))) |
138 | 136, 50, 137 | mp2an 679 |
. 2
⊢ ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) |
139 | | pncan2 10693 |
. . . 4
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
140 | 104, 105,
139 | mp2an 679 |
. . 3
⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
141 | 140 | oveq1i 6986 |
. 2
⊢ (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁)) |
142 | 124, 138,
141 | 3eqtri 2806 |
1
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) |