Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem2 Structured version   Visualization version   GIF version

Theorem ballotlem2 33785
Description: The probability that the first vote picked in a count is a B. (Contributed by Thierry Arnoux, 23-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
Assertion
Ref Expression
ballotlem2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐,𝑥
Allowed substitution hints:   𝑃(𝑥,𝑐)   𝑀(𝑥)   𝑁(𝑥)

Proof of Theorem ballotlem2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . . . . 6 𝑀 ∈ ℕ
2 ballotth.n . . . . . 6 𝑁 ∈ ℕ
3 ballotth.o . . . . . 6 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
41, 2, 3ballotlemoex 33782 . . . . 5 𝑂 ∈ V
5 ssrab2 4076 . . . . 5 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂
64, 5elpwi2 5345 . . . 4 {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂
7 fveq2 6890 . . . . . 6 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}))
87oveq1d 7426 . . . . 5 (𝑥 = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
9 ballotth.p . . . . 5 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
10 ovex 7444 . . . . 5 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) ∈ V
118, 9, 10fvmpt 6997 . . . 4 ({𝑐𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)))
126, 11ax-mp 5 . . 3 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))
13 an32 642 . . . . . . . 8 (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
14 2eluzge1 12882 . . . . . . . . . . . . . 14 2 ∈ (ℤ‘1)
15 fzss1 13544 . . . . . . . . . . . . . 14 (2 ∈ (ℤ‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)))
1614, 15ax-mp 5 . . . . . . . . . . . . 13 (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))
1716sspwi 4613 . . . . . . . . . . . 12 𝒫 (2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁))
1817sseli 3977 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)))
19 1lt2 12387 . . . . . . . . . . . . . . . 16 1 < 2
20 1re 11218 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
21 2re 12290 . . . . . . . . . . . . . . . . 17 2 ∈ ℝ
2220, 21ltnlei 11339 . . . . . . . . . . . . . . . 16 (1 < 2 ↔ ¬ 2 ≤ 1)
2319, 22mpbi 229 . . . . . . . . . . . . . . 15 ¬ 2 ≤ 1
24 elfzle1 13508 . . . . . . . . . . . . . . 15 (1 ∈ (2...(𝑀 + 𝑁)) → 2 ≤ 1)
2523, 24mto 196 . . . . . . . . . . . . . 14 ¬ 1 ∈ (2...(𝑀 + 𝑁))
26 elelpwi 4611 . . . . . . . . . . . . . 14 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁)))
2725, 26mto 196 . . . . . . . . . . . . 13 ¬ (1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
28 ancom 459 . . . . . . . . . . . . 13 ((1 ∈ 𝑐𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐))
2927, 28mtbi 321 . . . . . . . . . . . 12 ¬ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)
3029imnani 399 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐)
3118, 30jca 510 . . . . . . . . . 10 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
32 ssin 4229 . . . . . . . . . . . 12 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}))
33 1le2 12425 . . . . . . . . . . . . . . . . . . . . 21 1 ≤ 2
34 1p1e2 12341 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) = 2
35 nnge1 12244 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℕ → 1 ≤ 𝑀)
361, 35ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑀
37 nnge1 12244 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
382, 37ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 1 ≤ 𝑁
391nnrei 12225 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 ∈ ℝ
402nnrei 12225 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑁 ∈ ℝ
4120, 20, 39, 40le2addi 11781 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ≤ 𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁))
4236, 38, 41mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (1 + 1) ≤ (𝑀 + 𝑁)
4334, 42eqbrtrri 5170 . . . . . . . . . . . . . . . . . . . . 21 2 ≤ (𝑀 + 𝑁)
4439, 40readdcli 11233 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℝ
4520, 21, 44letri 11347 . . . . . . . . . . . . . . . . . . . . 21 ((1 ≤ 2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁))
4633, 43, 45mp2an 688 . . . . . . . . . . . . . . . . . . . 20 1 ≤ (𝑀 + 𝑁)
47 1z 12596 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
48 nnaddcl 12239 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
491, 2, 48mp2an 688 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 + 𝑁) ∈ ℕ
5049nnzi 12590 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 + 𝑁) ∈ ℤ
51 eluz 12840 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁)))
5247, 50, 51mp2an 688 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 + 𝑁) ∈ (ℤ‘1) ↔ 1 ≤ (𝑀 + 𝑁))
5346, 52mpbir 230 . . . . . . . . . . . . . . . . . . 19 (𝑀 + 𝑁) ∈ (ℤ‘1)
54 elfzp12 13584 . . . . . . . . . . . . . . . . . . 19 ((𝑀 + 𝑁) ∈ (ℤ‘1) → (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))))
5553, 54ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5655biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))
5756orcanai 999 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))
5834oveq1i 7421 . . . . . . . . . . . . . . . 16 ((1 + 1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁))
5957, 58eleqtrdi 2841 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁)))
6059ss2abi 4062 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))}
61 inab 4298 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)}
62 abid2 2869 . . . . . . . . . . . . . . . 16 {𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁))
6362ineq1i 4207 . . . . . . . . . . . . . . 15 ({𝑖𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
6461, 63eqtr3i 2760 . . . . . . . . . . . . . 14 {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})
65 abid2 2869 . . . . . . . . . . . . . 14 {𝑖𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁))
6660, 64, 653sstr3i 4023 . . . . . . . . . . . . 13 ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))
67 sstr 3989 . . . . . . . . . . . . 13 ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6866, 67mpan2 687 . . . . . . . . . . . 12 (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
6932, 68sylbi 216 . . . . . . . . . . 11 ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁)))
70 velpw 4606 . . . . . . . . . . . 12 (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁)))
71 ssab 4057 . . . . . . . . . . . . 13 (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1))
72 df-ex 1780 . . . . . . . . . . . . . . . 16 (∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
7372bicomi 223 . . . . . . . . . . . . . . 15 (¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7473con1bii 355 . . . . . . . . . . . . . 14 (¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
75 dfclel 2809 . . . . . . . . . . . . . . 15 (1 ∈ 𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
7675notbii 319 . . . . . . . . . . . . . 14 (¬ 1 ∈ 𝑐 ↔ ¬ ∃𝑖(𝑖 = 1 ∧ 𝑖𝑐))
77 imnang 1842 . . . . . . . . . . . . . . 15 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
78 ancom 459 . . . . . . . . . . . . . . . . 17 ((𝑖 = 1 ∧ 𝑖𝑐) ↔ (𝑖𝑐𝑖 = 1))
7978notbii 319 . . . . . . . . . . . . . . . 16 (¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ¬ (𝑖𝑐𝑖 = 1))
8079albii 1819 . . . . . . . . . . . . . . 15 (∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐) ↔ ∀𝑖 ¬ (𝑖𝑐𝑖 = 1))
8177, 80bitr4i 277 . . . . . . . . . . . . . 14 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖𝑐))
8274, 76, 813bitr4ri 303 . . . . . . . . . . . . 13 (∀𝑖(𝑖𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐)
8371, 82bitr2i 275 . . . . . . . . . . . 12 (¬ 1 ∈ 𝑐𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})
8470, 83anbi12i 625 . . . . . . . . . . 11 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}))
85 velpw 4606 . . . . . . . . . . 11 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁)))
8669, 84, 853imtr4i 291 . . . . . . . . . 10 ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)))
8731, 86impbii 208 . . . . . . . . 9 (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐))
8887anbi1i 622 . . . . . . . 8 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀))
893reqabi 3452 . . . . . . . . 9 (𝑐𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀))
9089anbi1i 622 . . . . . . . 8 ((𝑐𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐))
9113, 88, 903bitr4i 302 . . . . . . 7 ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐𝑂 ∧ ¬ 1 ∈ 𝑐))
9291rabbia2 3433 . . . . . 6 {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}
9392fveq2i 6893 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐})
94 fzfi 13941 . . . . . . 7 (2...(𝑀 + 𝑁)) ∈ Fin
951nnzi 12590 . . . . . . 7 𝑀 ∈ ℤ
96 hashbc 14416 . . . . . . 7 (((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) → ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}))
9794, 95, 96mp2an 688 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})
98 2z 12598 . . . . . . . . . . . 12 2 ∈ ℤ
9998eluz1i 12834 . . . . . . . . . . 11 ((𝑀 + 𝑁) ∈ (ℤ‘2) ↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤ (𝑀 + 𝑁)))
10050, 43, 99mpbir2an 707 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ (ℤ‘2)
101 hashfz 14391 . . . . . . . . . 10 ((𝑀 + 𝑁) ∈ (ℤ‘2) → (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1))
102100, 101ax-mp 5 . . . . . . . . 9 (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)
1031nncni 12226 . . . . . . . . . . 11 𝑀 ∈ ℂ
1042nncni 12226 . . . . . . . . . . 11 𝑁 ∈ ℂ
105103, 104addcli 11224 . . . . . . . . . 10 (𝑀 + 𝑁) ∈ ℂ
106 2cn 12291 . . . . . . . . . 10 2 ∈ ℂ
107 ax-1cn 11170 . . . . . . . . . 10 1 ∈ ℂ
108 subadd23 11476 . . . . . . . . . 10 (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)))
109105, 106, 107, 108mp3an 1459 . . . . . . . . 9 (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))
110106, 107negsubdi2i 11550 . . . . . . . . . . 11 -(2 − 1) = (1 − 2)
111 2m1e1 12342 . . . . . . . . . . . 12 (2 − 1) = 1
112111negeqi 11457 . . . . . . . . . . 11 -(2 − 1) = -1
113110, 112eqtr3i 2760 . . . . . . . . . 10 (1 − 2) = -1
114113oveq2i 7422 . . . . . . . . 9 ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1)
115102, 109, 1143eqtri 2762 . . . . . . . 8 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1)
116105, 107negsubi 11542 . . . . . . . 8 ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1)
117115, 116eqtri 2758 . . . . . . 7 (♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1)
118117oveq1i 7421 . . . . . 6 ((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀)
11997, 118eqtr3i 2760 . . . . 5 (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀)
12093, 119eqtr3i 2760 . . . 4 (♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀)
1211, 2, 3ballotlem1 33783 . . . 4 (♯‘𝑂) = ((𝑀 + 𝑁)C𝑀)
122120, 121oveq12i 7423 . . 3 ((♯‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
12312, 122eqtri 2758 . 2 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀))
124 0le1 11741 . . . . 5 0 ≤ 1
125 0re 11220 . . . . . 6 0 ∈ ℝ
126125, 20, 39letri 11347 . . . . 5 ((0 ≤ 1 ∧ 1 ≤ 𝑀) → 0 ≤ 𝑀)
127124, 36, 126mp2an 688 . . . 4 0 ≤ 𝑀
1282nngt0i 12255 . . . . . 6 0 < 𝑁
12940, 128elrpii 12981 . . . . 5 𝑁 ∈ ℝ+
130 ltaddrp 13015 . . . . 5 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → 𝑀 < (𝑀 + 𝑁))
13139, 129, 130mp2an 688 . . . 4 𝑀 < (𝑀 + 𝑁)
132 0z 12573 . . . . 5 0 ∈ ℤ
133 elfzm11 13576 . . . . 5 ((0 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁))))
134132, 50, 133mp2an 688 . . . 4 (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀𝑀 < (𝑀 + 𝑁)))
13595, 127, 131, 134mpbir3an 1339 . . 3 𝑀 ∈ (0...((𝑀 + 𝑁) − 1))
136 bcm1n 32273 . . 3 ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)))
137135, 49, 136mp2an 688 . 2 ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))
138 pncan2 11471 . . . 4 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
139103, 104, 138mp2an 688 . . 3 ((𝑀 + 𝑁) − 𝑀) = 𝑁
140139oveq1i 7421 . 2 (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁))
141123, 137, 1403eqtri 2762 1 (𝑃‘{𝑐𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 843  w3a 1085  wal 1537   = wceq 1539  wex 1779  wcel 2104  {cab 2707  {crab 3430  Vcvv 3472  cin 3946  wss 3947  𝒫 cpw 4601   class class class wbr 5147  cmpt 5230  cfv 6542  (class class class)co 7411  Fincfn 8941  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  -cneg 11449   / cdiv 11875  cn 12216  2c2 12271  cz 12562  cuz 12826  +crp 12978  ...cfz 13488  Ccbc 14266  chash 14294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979  df-fz 13489  df-seq 13971  df-fac 14238  df-bc 14267  df-hash 14295
This theorem is referenced by:  ballotth  33834
  Copyright terms: Public domain W3C validator