Step | Hyp | Ref
| Expression |
1 | | ballotth.m |
. . . . . 6
⊢ 𝑀 ∈ ℕ |
2 | | ballotth.n |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
3 | | ballotth.o |
. . . . . 6
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
4 | 1, 2, 3 | ballotlemoex 32352 |
. . . . 5
⊢ 𝑂 ∈ V |
5 | | ssrab2 4009 |
. . . . 5
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ⊆ 𝑂 |
6 | 4, 5 | elpwi2 5265 |
. . . 4
⊢ {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 |
7 | | fveq2 6756 |
. . . . . 6
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → (♯‘𝑥) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐})) |
8 | 7 | oveq1d 7270 |
. . . . 5
⊢ (𝑥 = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} → ((♯‘𝑥) / (♯‘𝑂)) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
9 | | ballotth.p |
. . . . 5
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
10 | | ovex 7288 |
. . . . 5
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) ∈
V |
11 | 8, 9, 10 | fvmpt 6857 |
. . . 4
⊢ ({𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} ∈ 𝒫 𝑂 → (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂))) |
12 | 6, 11 | ax-mp 5 |
. . 3
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) / (♯‘𝑂)) |
13 | | an32 642 |
. . . . . . . 8
⊢ (((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
14 | | 2eluzge1 12563 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
(ℤ≥‘1) |
15 | | fzss1 13224 |
. . . . . . . . . . . . . 14
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁))) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
(2...(𝑀 + 𝑁)) ⊆ (1...(𝑀 + 𝑁)) |
17 | 16 | sspwi 4544 |
. . . . . . . . . . . 12
⊢ 𝒫
(2...(𝑀 + 𝑁)) ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
18 | 17 | sseli 3913 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → 𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
19 | | 1lt2 12074 |
. . . . . . . . . . . . . . . 16
⊢ 1 <
2 |
20 | | 1re 10906 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ |
21 | | 2re 11977 |
. . . . . . . . . . . . . . . . 17
⊢ 2 ∈
ℝ |
22 | 20, 21 | ltnlei 11026 |
. . . . . . . . . . . . . . . 16
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
23 | 19, 22 | mpbi 229 |
. . . . . . . . . . . . . . 15
⊢ ¬ 2
≤ 1 |
24 | | elfzle1 13188 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
(2...(𝑀 + 𝑁)) → 2 ≤ 1) |
25 | 23, 24 | mto 196 |
. . . . . . . . . . . . . 14
⊢ ¬ 1
∈ (2...(𝑀 + 𝑁)) |
26 | | elelpwi 4542 |
. . . . . . . . . . . . . 14
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) → 1 ∈ (2...(𝑀 + 𝑁))) |
27 | 25, 26 | mto 196 |
. . . . . . . . . . . . 13
⊢ ¬ (1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
28 | | ancom 460 |
. . . . . . . . . . . . 13
⊢ ((1
∈ 𝑐 ∧ 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) ↔ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐)) |
29 | 27, 28 | mtbi 321 |
. . . . . . . . . . . 12
⊢ ¬
(𝑐 ∈ 𝒫
(2...(𝑀 + 𝑁)) ∧ 1 ∈ 𝑐) |
30 | 29 | imnani 400 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → ¬ 1 ∈ 𝑐) |
31 | 18, 30 | jca 511 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) → (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
32 | | ssin 4161 |
. . . . . . . . . . . 12
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) ↔ 𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1})) |
33 | | 1le2 12112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ≤
2 |
34 | | 1p1e2 12028 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1) =
2 |
35 | | nnge1 11931 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑀 ∈ ℕ → 1 ≤
𝑀) |
36 | 1, 35 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑀 |
37 | | nnge1 11931 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 1 ≤
𝑁) |
38 | 2, 37 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ 1 ≤
𝑁 |
39 | 1 | nnrei 11912 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑀 ∈ ℝ |
40 | 2 | nnrei 11912 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑁 ∈ ℝ |
41 | 20, 20, 39, 40 | le2addi 11468 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((1 ≤
𝑀 ∧ 1 ≤ 𝑁) → (1 + 1) ≤ (𝑀 + 𝑁)) |
42 | 36, 38, 41 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (1 + 1)
≤ (𝑀 + 𝑁) |
43 | 34, 42 | eqbrtrri 5093 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 2 ≤
(𝑀 + 𝑁) |
44 | 39, 40 | readdcli 10921 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℝ |
45 | 20, 21, 44 | letri 11034 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1 ≤
2 ∧ 2 ≤ (𝑀 + 𝑁)) → 1 ≤ (𝑀 + 𝑁)) |
46 | 33, 43, 45 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ≤
(𝑀 + 𝑁) |
47 | | 1z 12280 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 1 ∈
ℤ |
48 | | nnaddcl 11926 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
49 | 1, 2, 48 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑀 + 𝑁) ∈ ℕ |
50 | 49 | nnzi 12274 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑀 + 𝑁) ∈ ℤ |
51 | | eluz 12525 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((1
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁))) |
52 | 47, 50, 51 | mp2an 688 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
↔ 1 ≤ (𝑀 + 𝑁)) |
53 | 46, 52 | mpbir 230 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘1) |
54 | | elfzp12 13264 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘1)
→ (𝑖 ∈
(1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))))) |
55 | 53, 54 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↔ (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
56 | 55 | biimpi 215 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ (1...(𝑀 + 𝑁)) → (𝑖 = 1 ∨ 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁)))) |
57 | 56 | orcanai 999 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ ((1 + 1)...(𝑀 + 𝑁))) |
58 | 34 | oveq1i 7265 |
. . . . . . . . . . . . . . . 16
⊢ ((1 +
1)...(𝑀 + 𝑁)) = (2...(𝑀 + 𝑁)) |
59 | 57, 58 | eleqtrdi 2849 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1) → 𝑖 ∈ (2...(𝑀 + 𝑁))) |
60 | 59 | ss2abi 3996 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} ⊆ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} |
61 | | inab 4230 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} |
62 | | abid2 2881 |
. . . . . . . . . . . . . . . 16
⊢ {𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} = (1...(𝑀 + 𝑁)) |
63 | 62 | ineq1i 4139 |
. . . . . . . . . . . . . . 15
⊢ ({𝑖 ∣ 𝑖 ∈ (1...(𝑀 + 𝑁))} ∩ {𝑖 ∣ ¬ 𝑖 = 1}) = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
64 | 61, 63 | eqtr3i 2768 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ (𝑖 ∈ (1...(𝑀 + 𝑁)) ∧ ¬ 𝑖 = 1)} = ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) |
65 | | abid2 2881 |
. . . . . . . . . . . . . 14
⊢ {𝑖 ∣ 𝑖 ∈ (2...(𝑀 + 𝑁))} = (2...(𝑀 + 𝑁)) |
66 | 60, 64, 65 | 3sstr3i 3959 |
. . . . . . . . . . . . 13
⊢
((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁)) |
67 | | sstr 3925 |
. . . . . . . . . . . . 13
⊢ ((𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ∧ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) ⊆ (2...(𝑀 + 𝑁))) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
68 | 66, 67 | mpan2 687 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ((1...(𝑀 + 𝑁)) ∩ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
69 | 32, 68 | sylbi 216 |
. . . . . . . . . . 11
⊢ ((𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) → 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
70 | | velpw 4535 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (1...(𝑀 + 𝑁))) |
71 | | ssab 3991 |
. . . . . . . . . . . . 13
⊢ (𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1} ↔ ∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1)) |
72 | | df-ex 1784 |
. . . . . . . . . . . . . . . 16
⊢
(∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
73 | 72 | bicomi 223 |
. . . . . . . . . . . . . . 15
⊢ (¬
∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
74 | 73 | con1bii 356 |
. . . . . . . . . . . . . 14
⊢ (¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
75 | | dfclel 2818 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
𝑐 ↔ ∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
76 | 75 | notbii 319 |
. . . . . . . . . . . . . 14
⊢ (¬ 1
∈ 𝑐 ↔ ¬
∃𝑖(𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
77 | | imnang 1845 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
78 | | ancom 460 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
79 | 78 | notbii 319 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
80 | 79 | albii 1823 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑖 ¬
(𝑖 = 1 ∧ 𝑖 ∈ 𝑐) ↔ ∀𝑖 ¬ (𝑖 ∈ 𝑐 ∧ 𝑖 = 1)) |
81 | 77, 80 | bitr4i 277 |
. . . . . . . . . . . . . 14
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ∀𝑖 ¬ (𝑖 = 1 ∧ 𝑖 ∈ 𝑐)) |
82 | 74, 76, 81 | 3bitr4ri 303 |
. . . . . . . . . . . . 13
⊢
(∀𝑖(𝑖 ∈ 𝑐 → ¬ 𝑖 = 1) ↔ ¬ 1 ∈ 𝑐) |
83 | 71, 82 | bitr2i 275 |
. . . . . . . . . . . 12
⊢ (¬ 1
∈ 𝑐 ↔ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1}) |
84 | 70, 83 | anbi12i 626 |
. . . . . . . . . . 11
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ↔ (𝑐 ⊆ (1...(𝑀 + 𝑁)) ∧ 𝑐 ⊆ {𝑖 ∣ ¬ 𝑖 = 1})) |
85 | | velpw 4535 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ 𝑐 ⊆ (2...(𝑀 + 𝑁))) |
86 | 69, 84, 85 | 3imtr4i 291 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) → 𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁))) |
87 | 31, 86 | impbii 208 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐)) |
88 | 87 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ ¬ 1 ∈ 𝑐) ∧ (♯‘𝑐) = 𝑀)) |
89 | 3 | rabeq2i 3412 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝑂 ↔ (𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀)) |
90 | 89 | anbi1i 623 |
. . . . . . . 8
⊢ ((𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐) ↔ ((𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ∧ ¬ 1 ∈ 𝑐)) |
91 | 13, 88, 90 | 3bitr4i 302 |
. . . . . . 7
⊢ ((𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∧ (♯‘𝑐) = 𝑀) ↔ (𝑐 ∈ 𝑂 ∧ ¬ 1 ∈ 𝑐)) |
92 | 91 | rabbia2 3401 |
. . . . . 6
⊢ {𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} = {𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐} |
93 | 92 | fveq2i 6759 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (♯‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) |
94 | | fzfi 13620 |
. . . . . . 7
⊢
(2...(𝑀 + 𝑁)) ∈ Fin |
95 | 1 | nnzi 12274 |
. . . . . . 7
⊢ 𝑀 ∈ ℤ |
96 | | hashbc 14093 |
. . . . . . 7
⊢
(((2...(𝑀 + 𝑁)) ∈ Fin ∧ 𝑀 ∈ ℤ) →
((♯‘(2...(𝑀 +
𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀})) |
97 | 94, 95, 96 | mp2an 688 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (♯‘{𝑐 ∈ 𝒫 (2...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}) |
98 | | 2z 12282 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℤ |
99 | 98 | eluz1i 12519 |
. . . . . . . . . . 11
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
↔ ((𝑀 + 𝑁) ∈ ℤ ∧ 2 ≤
(𝑀 + 𝑁))) |
100 | 50, 43, 99 | mpbir2an 707 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈
(ℤ≥‘2) |
101 | | hashfz 14070 |
. . . . . . . . . 10
⊢ ((𝑀 + 𝑁) ∈ (ℤ≥‘2)
→ (♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1)) |
102 | 100, 101 | ax-mp 5 |
. . . . . . . . 9
⊢
(♯‘(2...(𝑀 + 𝑁))) = (((𝑀 + 𝑁) − 2) + 1) |
103 | 1 | nncni 11913 |
. . . . . . . . . . 11
⊢ 𝑀 ∈ ℂ |
104 | 2 | nncni 11913 |
. . . . . . . . . . 11
⊢ 𝑁 ∈ ℂ |
105 | 103, 104 | addcli 10912 |
. . . . . . . . . 10
⊢ (𝑀 + 𝑁) ∈ ℂ |
106 | | 2cn 11978 |
. . . . . . . . . 10
⊢ 2 ∈
ℂ |
107 | | ax-1cn 10860 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
108 | | subadd23 11163 |
. . . . . . . . . 10
⊢ (((𝑀 + 𝑁) ∈ ℂ ∧ 2 ∈ ℂ
∧ 1 ∈ ℂ) → (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2))) |
109 | 105, 106,
107, 108 | mp3an 1459 |
. . . . . . . . 9
⊢ (((𝑀 + 𝑁) − 2) + 1) = ((𝑀 + 𝑁) + (1 − 2)) |
110 | 106, 107 | negsubdi2i 11237 |
. . . . . . . . . . 11
⊢ -(2
− 1) = (1 − 2) |
111 | | 2m1e1 12029 |
. . . . . . . . . . . 12
⊢ (2
− 1) = 1 |
112 | 111 | negeqi 11144 |
. . . . . . . . . . 11
⊢ -(2
− 1) = -1 |
113 | 110, 112 | eqtr3i 2768 |
. . . . . . . . . 10
⊢ (1
− 2) = -1 |
114 | 113 | oveq2i 7266 |
. . . . . . . . 9
⊢ ((𝑀 + 𝑁) + (1 − 2)) = ((𝑀 + 𝑁) + -1) |
115 | 102, 109,
114 | 3eqtri 2770 |
. . . . . . . 8
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) + -1) |
116 | 105, 107 | negsubi 11229 |
. . . . . . . 8
⊢ ((𝑀 + 𝑁) + -1) = ((𝑀 + 𝑁) − 1) |
117 | 115, 116 | eqtri 2766 |
. . . . . . 7
⊢
(♯‘(2...(𝑀 + 𝑁))) = ((𝑀 + 𝑁) − 1) |
118 | 117 | oveq1i 7265 |
. . . . . 6
⊢
((♯‘(2...(𝑀 + 𝑁)))C𝑀) = (((𝑀 + 𝑁) − 1)C𝑀) |
119 | 97, 118 | eqtr3i 2768 |
. . . . 5
⊢
(♯‘{𝑐
∈ 𝒫 (2...(𝑀 +
𝑁)) ∣
(♯‘𝑐) = 𝑀}) = (((𝑀 + 𝑁) − 1)C𝑀) |
120 | 93, 119 | eqtr3i 2768 |
. . . 4
⊢
(♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) = (((𝑀 + 𝑁) − 1)C𝑀) |
121 | 1, 2, 3 | ballotlem1 32353 |
. . . 4
⊢
(♯‘𝑂) =
((𝑀 + 𝑁)C𝑀) |
122 | 120, 121 | oveq12i 7267 |
. . 3
⊢
((♯‘{𝑐
∈ 𝑂 ∣ ¬ 1
∈ 𝑐}) /
(♯‘𝑂)) =
((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
123 | 12, 122 | eqtri 2766 |
. 2
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) |
124 | | 0le1 11428 |
. . . . 5
⊢ 0 ≤
1 |
125 | | 0re 10908 |
. . . . . 6
⊢ 0 ∈
ℝ |
126 | 125, 20, 39 | letri 11034 |
. . . . 5
⊢ ((0 ≤
1 ∧ 1 ≤ 𝑀) → 0
≤ 𝑀) |
127 | 124, 36, 126 | mp2an 688 |
. . . 4
⊢ 0 ≤
𝑀 |
128 | 2 | nngt0i 11942 |
. . . . . 6
⊢ 0 <
𝑁 |
129 | 40, 128 | elrpii 12662 |
. . . . 5
⊢ 𝑁 ∈
ℝ+ |
130 | | ltaddrp 12696 |
. . . . 5
⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+)
→ 𝑀 < (𝑀 + 𝑁)) |
131 | 39, 129, 130 | mp2an 688 |
. . . 4
⊢ 𝑀 < (𝑀 + 𝑁) |
132 | | 0z 12260 |
. . . . 5
⊢ 0 ∈
ℤ |
133 | | elfzm11 13256 |
. . . . 5
⊢ ((0
∈ ℤ ∧ (𝑀 +
𝑁) ∈ ℤ) →
(𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁)))) |
134 | 132, 50, 133 | mp2an 688 |
. . . 4
⊢ (𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀 ∧ 𝑀 < (𝑀 + 𝑁))) |
135 | 95, 127, 131, 134 | mpbir3an 1339 |
. . 3
⊢ 𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) |
136 | | bcm1n 31018 |
. . 3
⊢ ((𝑀 ∈ (0...((𝑀 + 𝑁) − 1)) ∧ (𝑀 + 𝑁) ∈ ℕ) → ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁))) |
137 | 135, 49, 136 | mp2an 688 |
. 2
⊢ ((((𝑀 + 𝑁) − 1)C𝑀) / ((𝑀 + 𝑁)C𝑀)) = (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) |
138 | | pncan2 11158 |
. . . 4
⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
139 | 103, 104,
138 | mp2an 688 |
. . 3
⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
140 | 139 | oveq1i 7265 |
. 2
⊢ (((𝑀 + 𝑁) − 𝑀) / (𝑀 + 𝑁)) = (𝑁 / (𝑀 + 𝑁)) |
141 | 123, 137,
140 | 3eqtri 2770 |
1
⊢ (𝑃‘{𝑐 ∈ 𝑂 ∣ ¬ 1 ∈ 𝑐}) = (𝑁 / (𝑀 + 𝑁)) |