MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   GIF version

Theorem ab0 4362
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4367 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2932). (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2808, ax-8 2109. (Revised by GG, 30-Aug-2024.) (Proof shortened by SN, 8-Sep-2024.)
Assertion
Ref Expression
ab0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0
StepHypRef Expression
1 abbib 2803 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑥(𝜑 ↔ ⊥))
2 dfnul4 4317 . . 3 ∅ = {𝑥 ∣ ⊥}
32eqeq2i 2747 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
4 nbfal 1554 . . 3 𝜑 ↔ (𝜑 ↔ ⊥))
54albii 1818 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 ↔ ⊥))
61, 3, 53bitr4i 303 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1537   = wceq 1539  wfal 1551  {cab 2712  c0 4315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-dif 3936  df-nul 4316
This theorem is referenced by:  dfnf5  4364  abn0  4367  rab0  4368  rabeq0  4370  sticksstones22  42110
  Copyright terms: Public domain W3C validator