MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   GIF version

Theorem ab0 4332
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4335 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 3017). (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
ab0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0
StepHypRef Expression
1 nfab1 2979 . . 3 𝑥{𝑥𝜑}
21eq0f 4304 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑})
3 abid 2803 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43notbii 322 . . 3 𝑥 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
54albii 1816 . 2 (∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑} ↔ ∀𝑥 ¬ 𝜑)
62, 5bitri 277 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wal 1531   = wceq 1533  wcel 2110  {cab 2799  c0 4290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-dif 3938  df-nul 4291
This theorem is referenced by:  dfnf5  4333  rab0  4336  rabeq0  4337  abf  4355  0mpo0  7236
  Copyright terms: Public domain W3C validator