MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   GIF version

Theorem ab0 4287
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4290 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2988). (Contributed by BJ, 19-Mar-2021.)
Assertion
Ref Expression
ab0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0
StepHypRef Expression
1 nfab1 2957 . . 3 𝑥{𝑥𝜑}
21eq0f 4255 . 2 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑})
3 abid 2780 . . . 4 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
43notbii 323 . . 3 𝑥 ∈ {𝑥𝜑} ↔ ¬ 𝜑)
54albii 1821 . 2 (∀𝑥 ¬ 𝑥 ∈ {𝑥𝜑} ↔ ∀𝑥 ¬ 𝜑)
62, 5bitri 278 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wal 1536   = wceq 1538  wcel 2111  {cab 2776  c0 4243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-dif 3884  df-nul 4244
This theorem is referenced by:  dfnf5  4288  rab0  4291  rabeq0  4292  abfOLD  4311  0mpo0  7216
  Copyright terms: Public domain W3C validator