MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   GIF version

Theorem ab0 4360
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4365 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2934). (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2810, ax-8 2111. (Revised by GG, 30-Aug-2024.) (Proof shortened by SN, 8-Sep-2024.)
Assertion
Ref Expression
ab0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0
StepHypRef Expression
1 abbib 2805 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑥(𝜑 ↔ ⊥))
2 dfnul4 4315 . . 3 ∅ = {𝑥 ∣ ⊥}
32eqeq2i 2749 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
4 nbfal 1555 . . 3 𝜑 ↔ (𝜑 ↔ ⊥))
54albii 1819 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 ↔ ⊥))
61, 3, 53bitr4i 303 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wal 1538   = wceq 1540  wfal 1552  {cab 2714  c0 4313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-dif 3934  df-nul 4314
This theorem is referenced by:  dfnf5  4362  abn0  4365  rab0  4366  rabeq0  4368  sticksstones22  42186
  Copyright terms: Public domain W3C validator