MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ab0 Structured version   Visualization version   GIF version

Theorem ab0 4373
Description: The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4379 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2941). (Contributed by BJ, 19-Mar-2021.) Avoid df-clel 2810, ax-8 2108. (Revised by Gino Giotto, 30-Aug-2024.) (Proof shortened by SN, 8-Sep-2024.)
Assertion
Ref Expression
ab0 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)

Proof of Theorem ab0
StepHypRef Expression
1 abbib 2804 . 2 ({𝑥𝜑} = {𝑥 ∣ ⊥} ↔ ∀𝑥(𝜑 ↔ ⊥))
2 dfnul4 4323 . . 3 ∅ = {𝑥 ∣ ⊥}
32eqeq2i 2745 . 2 ({𝑥𝜑} = ∅ ↔ {𝑥𝜑} = {𝑥 ∣ ⊥})
4 nbfal 1556 . . 3 𝜑 ↔ (𝜑 ↔ ⊥))
54albii 1821 . 2 (∀𝑥 ¬ 𝜑 ↔ ∀𝑥(𝜑 ↔ ⊥))
61, 3, 53bitr4i 302 1 ({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wal 1539   = wceq 1541  wfal 1553  {cab 2709  c0 4321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-dif 3950  df-nul 4322
This theorem is referenced by:  dfnf5  4376  abn0  4379  rab0  4381  rabeq0  4383  abfOLD  4402  sticksstones22  40972
  Copyright terms: Public domain W3C validator