Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-animbi Structured version   Visualization version   GIF version

Theorem bj-animbi 34718
Description: Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 8 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023.)
Assertion
Ref Expression
bj-animbi ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))

Proof of Theorem bj-animbi
StepHypRef Expression
1 simpl 482 . . 3 ((𝜑𝜓) → 𝜑)
2 pm3.4 806 . . 3 ((𝜑𝜓) → (𝜑𝜓))
31, 22thd 264 . 2 ((𝜑𝜓) → (𝜑 ↔ (𝜑𝜓)))
4 biimp 214 . . . . 5 ((𝜑 ↔ (𝜑𝜓)) → (𝜑 → (𝜑𝜓)))
54pm2.43d 53 . . . 4 ((𝜑 ↔ (𝜑𝜓)) → (𝜑𝜓))
6 biimpr 219 . . . 4 ((𝜑 ↔ (𝜑𝜓)) → ((𝜑𝜓) → 𝜑))
75, 6mpd 15 . . 3 ((𝜑 ↔ (𝜑𝜓)) → 𝜑)
87, 5jcai 516 . 2 ((𝜑 ↔ (𝜑𝜓)) → (𝜑𝜓))
93, 8impbii 208 1 ((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  bj-currypara  34719
  Copyright terms: Public domain W3C validator