|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-animbi | Structured version Visualization version GIF version | ||
| Description: Conjunction in terms of implication and biconditional. Note that the proof is intuitionistic (use of ax-3 8 comes from the unusual definition of the biconditional in set.mm). (Contributed by BJ, 23-Sep-2023.) | 
| Ref | Expression | 
|---|---|
| bj-animbi | ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ↔ (𝜑 → 𝜓))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 2 | pm3.4 809 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 → 𝜓)) | |
| 3 | 1, 2 | 2thd 265 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ↔ (𝜑 → 𝜓))) | 
| 4 | biimp 215 | . . . . 5 ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → (𝜑 → (𝜑 → 𝜓))) | |
| 5 | 4 | pm2.43d 53 | . . . 4 ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → (𝜑 → 𝜓)) | 
| 6 | biimpr 220 | . . . 4 ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → ((𝜑 → 𝜓) → 𝜑)) | |
| 7 | 5, 6 | mpd 15 | . . 3 ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → 𝜑) | 
| 8 | 7, 5 | jcai 516 | . 2 ⊢ ((𝜑 ↔ (𝜑 → 𝜓)) → (𝜑 ∧ 𝜓)) | 
| 9 | 3, 8 | impbii 209 | 1 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜑 ↔ (𝜑 → 𝜓))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 | 
| This theorem is referenced by: bj-currypara 36562 | 
| Copyright terms: Public domain | W3C validator |