Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sblem1 Structured version   Visualization version   GIF version

Theorem bj-sblem1 35026
Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023.)
Assertion
Ref Expression
bj-sblem1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜒)))
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem bj-sblem1
StepHypRef Expression
1 ax-2 7 . . 3 ((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
21al2imi 1818 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜒)))
3 19.23v 1945 . 2 (∀𝑥(𝜑𝜒) ↔ (∃𝑥𝜑𝜒))
42, 3syl6ib 250 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥(𝜑𝜓) → (∃𝑥𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-ex 1783
This theorem is referenced by:  bj-sbievw1  35029
  Copyright terms: Public domain W3C validator