Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eu3f Structured version   Visualization version   GIF version

Theorem bj-eu3f 33404
Description: Version of eu3v 2588 where the disjoint variable condition is replaced with a non-freeness hypothesis. This is a "backup" of a theorem that used to be in the main part with label "eu3" and was deprecated in favor of eu3v 2588. (Contributed by NM, 8-Jul-1994.) (Proof shortened by BJ, 31-May-2019.)
Hypothesis
Ref Expression
bj-eu3f.1 𝑦𝜑
Assertion
Ref Expression
bj-eu3f (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem bj-eu3f
StepHypRef Expression
1 df-eu 2587 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
2 bj-eu3f.1 . . . 4 𝑦𝜑
32mof 2578 . . 3 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
43anbi2i 616 . 2 ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
51, 4bitri 267 1 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wal 1599  wex 1823  wnf 1827  ∃*wmo 2549  ∃!weu 2586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-10 2135  ax-11 2150  ax-12 2163
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-mo 2551  df-eu 2587
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator