| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sblem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for substitution. (Contributed by BJ, 23-Jul-2023.) |
| Ref | Expression |
|---|---|
| bj-sblem2 | ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) → ((∃𝑥𝜑 → 𝜒) → ∀𝑥(𝜑 → 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.23v 1942 | . 2 ⊢ (∀𝑥(𝜑 → 𝜒) ↔ (∃𝑥𝜑 → 𝜒)) | |
| 2 | ax-2 7 | . . 3 ⊢ ((𝜑 → (𝜒 → 𝜓)) → ((𝜑 → 𝜒) → (𝜑 → 𝜓))) | |
| 3 | 2 | al2imi 1815 | . 2 ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) → (∀𝑥(𝜑 → 𝜒) → ∀𝑥(𝜑 → 𝜓))) |
| 4 | 1, 3 | biimtrrid 243 | 1 ⊢ (∀𝑥(𝜑 → (𝜒 → 𝜓)) → ((∃𝑥𝜑 → 𝜒) → ∀𝑥(𝜑 → 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: bj-sbievw2 36847 |
| Copyright terms: Public domain | W3C validator |