Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-stdpc5 | Structured version Visualization version GIF version |
Description: More direct proof of stdpc5 2204. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-stdpc5.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
bj-stdpc5 | ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-stdpc5.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | stdpc5t 34989 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-nf 1790 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |