Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-stdpc5 Structured version   Visualization version   GIF version

Theorem bj-stdpc5 34990
Description: More direct proof of stdpc5 2204. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-stdpc5.1 𝑥𝜑
Assertion
Ref Expression
bj-stdpc5 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))

Proof of Theorem bj-stdpc5
StepHypRef Expression
1 bj-stdpc5.1 . 2 𝑥𝜑
2 stdpc5t 34989 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
31, 2ax-mp 5 1 (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-nf 1790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator