Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > stdpc5t | Structured version Visualization version GIF version |
Description: Closed form of stdpc5 2201. (Possible to place it before 19.21t 2199 and use it to prove 19.21t 2199). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
stdpc5t | ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5r 2187 | . 2 ⊢ (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
2 | alim 1813 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
3 | 1, 2 | syl9 77 | 1 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: bj-stdpc5 35011 bj-19.21t0 35013 |
Copyright terms: Public domain | W3C validator |