Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stdpc5t Structured version   Visualization version   GIF version

Theorem stdpc5t 35010
Description: Closed form of stdpc5 2201. (Possible to place it before 19.21t 2199 and use it to prove 19.21t 2199). (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Assertion
Ref Expression
stdpc5t (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))

Proof of Theorem stdpc5t
StepHypRef Expression
1 nf5r 2187 . 2 (Ⅎ𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
2 alim 1813 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
31, 2syl9 77 1 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  bj-stdpc5  35011  bj-19.21t0  35013
  Copyright terms: Public domain W3C validator