Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2stdpc5 Structured version   Visualization version   GIF version

Theorem 2stdpc5 35012
Description: A double stdpc5 2201 (one direction of PM*11.3). See also 2stdpc4 2073 and 19.21vv 41994. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
2stdpc5.1 𝑥𝜑
2stdpc5.2 𝑦𝜑
Assertion
Ref Expression
2stdpc5 (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))

Proof of Theorem 2stdpc5
StepHypRef Expression
1 2stdpc5.2 . . . 4 𝑦𝜑
21stdpc5 2201 . . 3 (∀𝑦(𝜑𝜓) → (𝜑 → ∀𝑦𝜓))
32alimi 1814 . 2 (∀𝑥𝑦(𝜑𝜓) → ∀𝑥(𝜑 → ∀𝑦𝜓))
4 2stdpc5.1 . . 3 𝑥𝜑
54stdpc5 2201 . 2 (∀𝑥(𝜑 → ∀𝑦𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
63, 5syl 17 1 (∀𝑥𝑦(𝜑𝜓) → (𝜑 → ∀𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  ax11-pm  35015  ax11-pm2  35019
  Copyright terms: Public domain W3C validator