|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2stdpc5 | Structured version Visualization version GIF version | ||
| Description: A double stdpc5 2208 (one direction of PM*11.3). See also 2stdpc4 2070 and 19.21vv 44395. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| 2stdpc5.1 | ⊢ Ⅎ𝑥𝜑 | 
| 2stdpc5.2 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| 2stdpc5 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2stdpc5.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | stdpc5 2208 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑦𝜓)) | 
| 3 | 2 | alimi 1811 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∀𝑦𝜓)) | 
| 4 | 2stdpc5.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | stdpc5 2208 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| 6 | 3, 5 | syl 17 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: ax11-pm 36833 ax11-pm2 36837 | 
| Copyright terms: Public domain | W3C validator |