| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2stdpc5 | Structured version Visualization version GIF version | ||
| Description: A double stdpc5 2208 (one direction of PM*11.3). See also 2stdpc4 2070 and 19.21vv 44400. (Contributed by BJ, 15-Sep-2018.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| 2stdpc5.1 | ⊢ Ⅎ𝑥𝜑 |
| 2stdpc5.2 | ⊢ Ⅎ𝑦𝜑 |
| Ref | Expression |
|---|---|
| 2stdpc5 | ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2stdpc5.2 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | stdpc5 2208 | . . 3 ⊢ (∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑦𝜓)) |
| 3 | 2 | alimi 1811 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → ∀𝑥(𝜑 → ∀𝑦𝜓)) |
| 4 | 2stdpc5.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | stdpc5 2208 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑦𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → (𝜑 → ∀𝑥∀𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: ax11-pm 36850 ax11-pm2 36854 |
| Copyright terms: Public domain | W3C validator |