Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sylge | Structured version Visualization version GIF version |
Description: Dual statement of sylg 1826 (the final "e" in the label stands for "existential (version of sylg 1826)". Variant of exlimih 2289. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-sylge.nf | ⊢ (∃𝑥𝜑 → 𝜓) |
bj-sylge.maj | ⊢ (𝜒 → 𝜑) |
Ref | Expression |
---|---|
bj-sylge | ⊢ (∃𝑥𝜒 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-sylge.maj | . . 3 ⊢ (𝜒 → 𝜑) | |
2 | 1 | eximi 1838 | . 2 ⊢ (∃𝑥𝜒 → ∃𝑥𝜑) |
3 | bj-sylge.nf | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
4 | 2, 3 | syl 17 | 1 ⊢ (∃𝑥𝜒 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: bj-cbvexiw 34779 |
Copyright terms: Public domain | W3C validator |