|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sylge | Structured version Visualization version GIF version | ||
| Description: Dual statement of sylg 1822 (the final "e" in the label stands for "existential (version of sylg 1822)". Variant of exlimih 2288. (Contributed by BJ, 25-Dec-2023.) | 
| Ref | Expression | 
|---|---|
| bj-sylge.nf | ⊢ (∃𝑥𝜑 → 𝜓) | 
| bj-sylge.maj | ⊢ (𝜒 → 𝜑) | 
| Ref | Expression | 
|---|---|
| bj-sylge | ⊢ (∃𝑥𝜒 → 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-sylge.maj | . . 3 ⊢ (𝜒 → 𝜑) | |
| 2 | 1 | eximi 1834 | . 2 ⊢ (∃𝑥𝜒 → ∃𝑥𝜑) | 
| 3 | bj-sylge.nf | . 2 ⊢ (∃𝑥𝜑 → 𝜓) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∃𝑥𝜒 → 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: bj-cbvexiw 36673 | 
| Copyright terms: Public domain | W3C validator |