Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-exlimd | Structured version Visualization version GIF version |
Description: A slightly more general exlimd 2214. A common usage will have 𝜑 substituted for 𝜓 and 𝜃 substituted for 𝜏, giving a form closer to exlimd 2214. (Contributed by BJ, 25-Dec-2023.) |
Ref | Expression |
---|---|
bj-exlimd.ph | ⊢ (𝜑 → ∀𝑥𝜓) |
bj-exlimd.th | ⊢ (𝜑 → (∃𝑥𝜃 → 𝜏)) |
bj-exlimd.maj | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
bj-exlimd | ⊢ (𝜑 → (∃𝑥𝜒 → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-exlimd.th | . 2 ⊢ (𝜑 → (∃𝑥𝜃 → 𝜏)) | |
2 | bj-exlimd.ph | . . 3 ⊢ (𝜑 → ∀𝑥𝜓) | |
3 | bj-exlimd.maj | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
4 | 2, 3 | sylg 1826 | . 2 ⊢ (𝜑 → ∀𝑥(𝜒 → 𝜃)) |
5 | bj-exlimg 34731 | . 2 ⊢ ((∃𝑥𝜃 → 𝜏) → (∀𝑥(𝜒 → 𝜃) → (∃𝑥𝜒 → 𝜏))) | |
6 | 1, 4, 5 | sylc 65 | 1 ⊢ (𝜑 → (∃𝑥𝜒 → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: copsex2d 35237 |
Copyright terms: Public domain | W3C validator |