| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eximi 1836 eximii 1837 exa1 1838 exsimpl 1868 exsimpr 1869 19.29r2 1875 19.29x 1876 19.35 1877 19.40-2 1887 emptyex 1907 exlimiv 1930 speimfwALT 1964 19.12 2326 ax13lem2 2374 exdistrf 2445 equs45f 2457 dfmoeu 2529 moimi 2538 eu6 2567 2eu2ex 2636 reximi2 3062 cgsexg 3492 gencbvex 3507 eqvincg 3614 sbcg 3826 n0rex 4320 axrep2 5237 sepex 5255 bm1.3iiOLD 5257 ax6vsep 5258 copsexgw 5450 copsexg 5451 relopabi 5785 dminss 6126 imainss 6127 iotanul2 6481 iotaexOLD 6491 fv3 6876 ssimaex 6946 dffv2 6956 exfo 7077 oprabidw 7418 oprabid 7419 zfrep6 7933 frxp 8105 suppimacnvss 8152 tz7.48-1 8411 enssdom 8948 enfii 9150 fineqvlem 9209 enp1i 9224 infcntss 9273 infeq5 9590 rankuni 9816 scott0 9839 acni3 10000 acnnum 10005 dfac3 10074 dfac9 10090 kmlem1 10104 cflm 10203 cfcof 10227 axdc4lem 10408 axcclem 10410 ac6c4 10434 ac6s 10437 ac6s2 10439 axdclem2 10473 brdom3 10481 brdom5 10482 brdom4 10483 nqpr 10967 ltexprlem4 10992 reclem2pr 11001 hash1to3 14457 trclublem 14961 fnpr2ob 17521 drsdirfi 18266 toprntopon 22812 2ndcsb 23336 fbssint 23725 isfil2 23743 alexsubALTlem3 23936 lpbl 24391 metustfbas 24445 lrrecfr 27850 ex-natded9.26-2 30349 19.9d2rf 32398 rexunirn 32421 f1ocnt 32725 fsumiunle 32754 fmcncfil 33921 esumiun 34084 0elsiga 34104 ddemeas 34226 bnj168 34720 bnj593 34735 bnj607 34906 bnj600 34909 bnj916 34923 fineqvpow 35086 onvf1odlem1 35090 wevgblacfn 35096 lfuhgr3 35107 cusgredgex 35109 loop1cycl 35124 umgr2cycl 35128 fundmpss 35754 exisym1 36412 bj-sylge 36612 bj-19.12 36749 bj-equs45fv 36799 bj-snsetex 36951 bj-snglss 36958 bj-snglex 36961 bj-bm1.3ii 37052 bj-restn0 37078 bj-ccinftydisj 37201 mptsnunlem 37326 pibt2 37405 wl-cbvmotv 37501 wl-moae 37504 wl-nax6im 37506 eu6w 42664 iscard4 43522 ismnushort 44290 spsbce-2 44370 iotaexeu 44407 iotasbc 44408 relopabVD 44890 ax6e2ndeqVD 44898 2uasbanhVD 44900 ax6e2ndeqALT 44920 fnchoice 45023 rfcnnnub 45030 stoweidlem35 46033 stoweidlem57 46055 mo0sn 48804 |
| Copyright terms: Public domain | W3C validator |