Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1837 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: 2eximi 1839 eximii 1840 exa1 1841 exsimpl 1872 exsimpr 1873 19.29r2 1879 19.29x 1880 19.35 1881 19.40-2 1891 emptyex 1911 exlimiv 1934 speimfwALT 1969 19.12 2325 ax13lem2 2376 exdistrf 2447 equs45f 2459 dfmoeu 2536 moimi 2545 eu6 2574 2eu2ex 2645 reximi2 3171 cgsexg 3464 gencbvex 3478 eqvincg 3570 sbcg 3791 n0rex 4285 axrep2 5208 bm1.3ii 5221 ax6vsep 5222 copsexgw 5398 copsexg 5399 relopabi 5721 dminss 6045 imainss 6046 iotaex 6398 fv3 6774 ssimaex 6835 dffv2 6845 exfo 6963 oprabidw 7286 oprabid 7287 zfrep6 7771 frxp 7938 suppimacnvss 7960 tz7.48-1 8244 enssdom 8720 enfii 8932 fineqvlem 8966 infcntss 9018 infeq5 9325 omex 9331 rankuni 9552 scott0 9575 acni3 9734 acnnum 9739 dfac3 9808 dfac9 9823 kmlem1 9837 cflm 9937 cfcof 9961 axdc4lem 10142 axcclem 10144 ac6c4 10168 ac6s 10171 ac6s2 10173 axdclem2 10207 brdom3 10215 brdom5 10216 brdom4 10217 nqpr 10701 ltexprlem4 10726 reclem2pr 10735 hash1to3 14133 trclublem 14634 fnpr2ob 17186 drsdirfi 17938 toprntopon 21982 2ndcsb 22508 fbssint 22897 isfil2 22915 alexsubALTlem3 23108 lpbl 23565 metustfbas 23619 ex-natded9.26-2 28685 19.9d2rf 30721 rexunirn 30741 f1ocnt 31025 fsumiunle 31045 fmcncfil 31783 esumiun 31962 0elsiga 31982 ddemeas 32104 bnj168 32609 bnj593 32625 bnj607 32796 bnj600 32799 bnj916 32813 fineqvpow 32965 lfuhgr3 32981 cusgredgex 32983 loop1cycl 32999 umgr2cycl 33003 fundmpss 33646 lrrecfr 34027 exisym1 34540 bj-sylge 34732 bj-19.12 34870 bj-equs45fv 34920 bj-snsetex 35080 bj-snglss 35087 bj-snglex 35090 bj-bm1.3ii 35162 bj-restn0 35188 bj-ccinftydisj 35311 mptsnunlem 35436 pibt2 35515 wl-cbvmotv 35599 wl-moae 35602 wl-nax6im 35604 sn-iotanul 40121 iscard4 41038 ismnushort 41808 spsbce-2 41888 iotaexeu 41925 iotasbc 41926 relopabVD 42410 ax6e2ndeqVD 42418 2uasbanhVD 42420 ax6e2ndeqALT 42440 fnchoice 42461 rfcnnnub 42468 stoweidlem35 43466 stoweidlem57 43488 mo0sn 46049 |
Copyright terms: Public domain | W3C validator |