| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1833 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1796 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 |
| This theorem is referenced by: 2eximi 1835 eximii 1836 exa1 1837 exsimpl 1867 exsimpr 1868 19.29r2 1874 19.29x 1875 19.35 1876 19.40-2 1886 emptyex 1906 exlimiv 1929 speimfwALT 1963 19.12 2326 ax13lem2 2380 exdistrf 2451 equs45f 2463 dfmoeu 2535 moimi 2544 eu6 2573 2eu2ex 2642 reximi2 3078 cgsexg 3525 gencbvex 3540 eqvincg 3647 sbcg 3862 n0rex 4356 axrep2 5281 sepex 5299 bm1.3iiOLD 5301 ax6vsep 5302 copsexgw 5494 copsexg 5495 relopabi 5831 dminss 6172 imainss 6173 iotanul2 6530 iotaexOLD 6540 fv3 6923 ssimaex 6993 dffv2 7003 exfo 7124 oprabidw 7463 oprabid 7464 zfrep6 7980 frxp 8152 suppimacnvss 8199 tz7.48-1 8484 enssdom 9018 enfii 9227 fineqvlem 9299 enp1i 9314 infcntss 9363 infeq5 9678 rankuni 9904 scott0 9927 acni3 10088 acnnum 10093 dfac3 10162 dfac9 10178 kmlem1 10192 cflm 10291 cfcof 10315 axdc4lem 10496 axcclem 10498 ac6c4 10522 ac6s 10525 ac6s2 10527 axdclem2 10561 brdom3 10569 brdom5 10570 brdom4 10571 nqpr 11055 ltexprlem4 11080 reclem2pr 11089 hash1to3 14532 trclublem 15035 fnpr2ob 17604 drsdirfi 18352 toprntopon 22932 2ndcsb 23458 fbssint 23847 isfil2 23865 alexsubALTlem3 24058 lpbl 24517 metustfbas 24571 lrrecfr 27977 ex-natded9.26-2 30440 19.9d2rf 32489 rexunirn 32512 f1ocnt 32805 fsumiunle 32832 fmcncfil 33931 esumiun 34096 0elsiga 34116 ddemeas 34238 bnj168 34745 bnj593 34760 bnj607 34931 bnj600 34934 bnj916 34948 fineqvpow 35111 wevgblacfn 35115 lfuhgr3 35126 cusgredgex 35128 loop1cycl 35143 umgr2cycl 35147 fundmpss 35768 exisym1 36426 bj-sylge 36626 bj-19.12 36763 bj-equs45fv 36813 bj-snsetex 36965 bj-snglss 36972 bj-snglex 36975 bj-bm1.3ii 37066 bj-restn0 37092 bj-ccinftydisj 37215 mptsnunlem 37340 pibt2 37419 wl-cbvmotv 37515 wl-moae 37518 wl-nax6im 37520 eu6w 42691 iscard4 43551 ismnushort 44325 spsbce-2 44405 iotaexeu 44442 iotasbc 44443 relopabVD 44926 ax6e2ndeqVD 44934 2uasbanhVD 44936 ax6e2ndeqALT 44956 fnchoice 45039 rfcnnnub 45046 stoweidlem35 46055 stoweidlem57 46077 mo0sn 48740 |
| Copyright terms: Public domain | W3C validator |