| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1835 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2eximi 1837 eximii 1838 exa1 1839 exsimpl 1869 exsimpr 1870 19.29r2 1876 19.29x 1877 19.35 1878 19.40-2 1888 emptyex 1908 exlimiv 1931 speimfwALT 1965 19.12 2330 ax13lem2 2378 exdistrf 2449 equs45f 2461 dfmoeu 2533 moimi 2542 eu6 2571 2eu2ex 2640 reximi2 3066 cgsexg 3482 gencbvex 3496 eqvincg 3599 sbcg 3810 n0rex 4306 axrep2 5222 sepex 5240 bm1.3iiOLD 5242 ax6vsep 5243 copsexgw 5433 copsexg 5434 relopabi 5766 dmcoss 5918 dminss 6105 imainss 6106 iotanul2 6459 fv3 6846 ssimaex 6913 dffv2 6923 exfo 7044 oprabidw 7383 oprabid 7384 zfrep6 7893 frxp 8062 suppimacnvss 8109 tz7.48-1 8368 enssdom 8905 enssdomOLD 8906 enfii 9102 fineqvlem 9157 enp1i 9170 infcntss 9214 infeq5 9534 rankuni 9763 scott0 9786 acni3 9945 acnnum 9950 dfac3 10019 dfac9 10035 kmlem1 10049 cflm 10148 cfcof 10172 axdc4lem 10353 axcclem 10355 ac6c4 10379 ac6s 10382 ac6s2 10384 axdclem2 10418 brdom3 10426 brdom5 10427 brdom4 10428 nqpr 10912 ltexprlem4 10937 reclem2pr 10946 hash1to3 14401 trclublem 14904 fnpr2ob 17464 drsdirfi 18213 toprntopon 22841 2ndcsb 23365 fbssint 23754 isfil2 23772 alexsubALTlem3 23965 lpbl 24419 metustfbas 24473 lrrecfr 27887 ex-natded9.26-2 30402 19.9d2rf 32450 rexunirn 32473 f1ocnt 32787 fsumiunle 32817 fmcncfil 33965 esumiun 34128 0elsiga 34148 ddemeas 34270 bnj168 34763 bnj593 34778 bnj607 34949 bnj600 34952 bnj916 34966 tz9.1regs 35151 fineqvpow 35159 onvf1odlem1 35168 wevgblacfn 35174 lfuhgr3 35185 cusgredgex 35187 loop1cycl 35202 umgr2cycl 35206 fundmpss 35832 exisym1 36489 bj-sylge 36689 bj-19.12 36826 bj-equs45fv 36876 bj-snsetex 37028 bj-snglss 37035 bj-snglex 37038 bj-bm1.3ii 37129 bj-restn0 37155 bj-ccinftydisj 37278 mptsnunlem 37403 pibt2 37482 wl-cbvmotv 37578 wl-moae 37581 wl-nax6im 37583 nfexhe 42327 eu6w 42794 iscard4 43650 ismnushort 44418 spsbce-2 44498 iotaexeu 44535 iotasbc 44536 relopabVD 45017 ax6e2ndeqVD 45025 2uasbanhVD 45027 ax6e2ndeqALT 45047 fnchoice 45150 rfcnnnub 45157 stoweidlem35 46157 stoweidlem57 46179 mo0sn 48940 |
| Copyright terms: Public domain | W3C validator |