| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eximi 1836 eximii 1837 exa1 1838 exsimpl 1868 exsimpr 1869 19.29r2 1875 19.29x 1876 19.35 1877 19.40-2 1887 emptyex 1907 exlimiv 1930 speimfwALT 1964 19.12 2328 ax13lem2 2381 exdistrf 2452 equs45f 2464 dfmoeu 2536 moimi 2545 eu6 2574 2eu2ex 2643 reximi2 3070 cgsexg 3510 gencbvex 3525 eqvincg 3632 sbcg 3843 n0rex 4337 axrep2 5257 sepex 5275 bm1.3iiOLD 5277 ax6vsep 5278 copsexgw 5470 copsexg 5471 relopabi 5806 dminss 6147 imainss 6148 iotanul2 6506 iotaexOLD 6516 fv3 6899 ssimaex 6969 dffv2 6979 exfo 7100 oprabidw 7441 oprabid 7442 zfrep6 7958 frxp 8130 suppimacnvss 8177 tz7.48-1 8462 enssdom 8996 enfii 9205 fineqvlem 9275 enp1i 9290 infcntss 9339 infeq5 9656 rankuni 9882 scott0 9905 acni3 10066 acnnum 10071 dfac3 10140 dfac9 10156 kmlem1 10170 cflm 10269 cfcof 10293 axdc4lem 10474 axcclem 10476 ac6c4 10500 ac6s 10503 ac6s2 10505 axdclem2 10539 brdom3 10547 brdom5 10548 brdom4 10549 nqpr 11033 ltexprlem4 11058 reclem2pr 11067 hash1to3 14515 trclublem 15019 fnpr2ob 17577 drsdirfi 18322 toprntopon 22868 2ndcsb 23392 fbssint 23781 isfil2 23799 alexsubALTlem3 23992 lpbl 24447 metustfbas 24501 lrrecfr 27907 ex-natded9.26-2 30406 19.9d2rf 32455 rexunirn 32478 f1ocnt 32784 fsumiunle 32813 fmcncfil 33967 esumiun 34130 0elsiga 34150 ddemeas 34272 bnj168 34766 bnj593 34781 bnj607 34952 bnj600 34955 bnj916 34969 fineqvpow 35132 wevgblacfn 35136 lfuhgr3 35147 cusgredgex 35149 loop1cycl 35164 umgr2cycl 35168 fundmpss 35789 exisym1 36447 bj-sylge 36647 bj-19.12 36784 bj-equs45fv 36834 bj-snsetex 36986 bj-snglss 36993 bj-snglex 36996 bj-bm1.3ii 37087 bj-restn0 37113 bj-ccinftydisj 37236 mptsnunlem 37361 pibt2 37440 wl-cbvmotv 37536 wl-moae 37539 wl-nax6im 37541 eu6w 42674 iscard4 43532 ismnushort 44300 spsbce-2 44380 iotaexeu 44417 iotasbc 44418 relopabVD 44900 ax6e2ndeqVD 44908 2uasbanhVD 44910 ax6e2ndeqALT 44930 fnchoice 45033 rfcnnnub 45040 stoweidlem35 46044 stoweidlem57 46066 mo0sn 48774 |
| Copyright terms: Public domain | W3C validator |