![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1831 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1794 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 |
This theorem is referenced by: 2eximi 1833 eximii 1834 exa1 1835 exsimpl 1866 exsimpr 1867 19.29r2 1873 19.29x 1874 19.35 1875 19.40-2 1885 emptyex 1905 exlimiv 1928 speimfwALT 1962 19.12 2326 ax13lem2 2379 exdistrf 2450 equs45f 2462 dfmoeu 2534 moimi 2543 eu6 2572 2eu2ex 2641 reximi2 3077 cgsexg 3524 gencbvex 3541 eqvincg 3648 sbcg 3870 n0rex 4363 axrep2 5288 sepex 5306 bm1.3iiOLD 5308 ax6vsep 5309 copsexgw 5501 copsexg 5502 relopabi 5835 dminss 6175 imainss 6176 iotanul2 6533 iotaexOLD 6543 fv3 6925 ssimaex 6994 dffv2 7004 exfo 7125 oprabidw 7462 oprabid 7463 zfrep6 7978 frxp 8150 suppimacnvss 8197 tz7.48-1 8482 enssdom 9016 enfii 9224 fineqvlem 9296 enp1i 9311 infcntss 9360 infeq5 9675 omex 9681 rankuni 9901 scott0 9924 acni3 10085 acnnum 10090 dfac3 10159 dfac9 10175 kmlem1 10189 cflm 10288 cfcof 10312 axdc4lem 10493 axcclem 10495 ac6c4 10519 ac6s 10522 ac6s2 10524 axdclem2 10558 brdom3 10566 brdom5 10567 brdom4 10568 nqpr 11052 ltexprlem4 11077 reclem2pr 11086 hash1to3 14528 trclublem 15031 fnpr2ob 17605 drsdirfi 18363 toprntopon 22947 2ndcsb 23473 fbssint 23862 isfil2 23880 alexsubALTlem3 24073 lpbl 24532 metustfbas 24586 lrrecfr 27991 ex-natded9.26-2 30449 19.9d2rf 32498 rexunirn 32520 f1ocnt 32810 fsumiunle 32836 fmcncfil 33892 esumiun 34075 0elsiga 34095 ddemeas 34217 bnj168 34723 bnj593 34738 bnj607 34909 bnj600 34912 bnj916 34926 fineqvpow 35089 wevgblacfn 35093 lfuhgr3 35104 cusgredgex 35106 loop1cycl 35122 umgr2cycl 35126 fundmpss 35748 exisym1 36407 bj-sylge 36607 bj-19.12 36744 bj-equs45fv 36794 bj-snsetex 36946 bj-snglss 36953 bj-snglex 36956 bj-bm1.3ii 37047 bj-restn0 37073 bj-ccinftydisj 37196 mptsnunlem 37321 pibt2 37400 wl-cbvmotv 37494 wl-moae 37497 wl-nax6im 37499 eu6w 42663 iscard4 43523 ismnushort 44297 spsbce-2 44377 iotaexeu 44414 iotasbc 44415 relopabVD 44899 ax6e2ndeqVD 44907 2uasbanhVD 44909 ax6e2ndeqALT 44929 fnchoice 44967 rfcnnnub 44974 stoweidlem35 45991 stoweidlem57 46013 mo0sn 48664 |
Copyright terms: Public domain | W3C validator |