| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1835 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 |
| This theorem is referenced by: 2eximi 1837 eximii 1838 exa1 1839 exsimpl 1869 exsimpr 1870 19.29r2 1876 19.29x 1877 19.35 1878 19.40-2 1888 emptyex 1908 exlimiv 1931 speimfwALT 1965 19.12 2328 ax13lem2 2376 exdistrf 2447 equs45f 2459 dfmoeu 2531 moimi 2540 eu6 2569 2eu2ex 2638 reximi2 3065 cgsexg 3481 gencbvex 3496 eqvincg 3603 sbcg 3814 n0rex 4307 axrep2 5220 sepex 5238 bm1.3iiOLD 5240 ax6vsep 5241 copsexgw 5430 copsexg 5431 relopabi 5762 dmcoss 5914 dminss 6100 imainss 6101 iotanul2 6454 fv3 6840 ssimaex 6907 dffv2 6917 exfo 7038 oprabidw 7377 oprabid 7378 zfrep6 7887 frxp 8056 suppimacnvss 8103 tz7.48-1 8362 enssdom 8899 enfii 9095 fineqvlem 9150 enp1i 9163 infcntss 9207 infeq5 9527 rankuni 9753 scott0 9776 acni3 9935 acnnum 9940 dfac3 10009 dfac9 10025 kmlem1 10039 cflm 10138 cfcof 10162 axdc4lem 10343 axcclem 10345 ac6c4 10369 ac6s 10372 ac6s2 10374 axdclem2 10408 brdom3 10416 brdom5 10417 brdom4 10418 nqpr 10902 ltexprlem4 10927 reclem2pr 10936 hash1to3 14396 trclublem 14899 fnpr2ob 17459 drsdirfi 18208 toprntopon 22838 2ndcsb 23362 fbssint 23751 isfil2 23769 alexsubALTlem3 23962 lpbl 24416 metustfbas 24470 lrrecfr 27884 ex-natded9.26-2 30395 19.9d2rf 32443 rexunirn 32466 f1ocnt 32777 fsumiunle 32807 fmcncfil 33939 esumiun 34102 0elsiga 34122 ddemeas 34244 bnj168 34737 bnj593 34752 bnj607 34923 bnj600 34926 bnj916 34940 tz9.1regs 35118 fineqvpow 35126 onvf1odlem1 35135 wevgblacfn 35141 lfuhgr3 35152 cusgredgex 35154 loop1cycl 35169 umgr2cycl 35173 fundmpss 35799 exisym1 36457 bj-sylge 36657 bj-19.12 36794 bj-equs45fv 36844 bj-snsetex 36996 bj-snglss 37003 bj-snglex 37006 bj-bm1.3ii 37097 bj-restn0 37123 bj-ccinftydisj 37246 mptsnunlem 37371 pibt2 37450 wl-cbvmotv 37546 wl-moae 37549 wl-nax6im 37551 eu6w 42708 iscard4 43565 ismnushort 44333 spsbce-2 44413 iotaexeu 44450 iotasbc 44451 relopabVD 44932 ax6e2ndeqVD 44940 2uasbanhVD 44942 ax6e2ndeqALT 44962 fnchoice 45065 rfcnnnub 45072 stoweidlem35 46072 stoweidlem57 46094 mo0sn 48846 |
| Copyright terms: Public domain | W3C validator |