![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1837 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1800 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 |
This theorem is referenced by: 2eximi 1839 eximii 1840 exa1 1841 exsimpl 1872 exsimpr 1873 19.29r2 1879 19.29x 1880 19.35 1881 19.40-2 1891 emptyex 1911 exlimiv 1934 speimfwALT 1969 19.12 2321 ax13lem2 2376 exdistrf 2447 equs45f 2459 dfmoeu 2531 moimi 2540 eu6 2569 2eu2ex 2640 reximi2 3080 cgsexg 3519 gencbvex 3536 eqvincg 3637 sbcg 3857 n0rex 4355 axrep2 5289 bm1.3ii 5303 ax6vsep 5304 copsexgw 5491 copsexg 5492 relopabi 5823 dminss 6153 imainss 6154 iotanul2 6514 iotaexOLD 6524 fv3 6910 ssimaex 6977 dffv2 6987 exfo 7107 oprabidw 7440 oprabid 7441 zfrep6 7941 frxp 8112 suppimacnvss 8158 tz7.48-1 8443 enssdom 8973 enfii 9189 fineqvlem 9262 enp1i 9279 infcntss 9321 infeq5 9632 omex 9638 rankuni 9858 scott0 9881 acni3 10042 acnnum 10047 dfac3 10116 dfac9 10131 kmlem1 10145 cflm 10245 cfcof 10269 axdc4lem 10450 axcclem 10452 ac6c4 10476 ac6s 10479 ac6s2 10481 axdclem2 10515 brdom3 10523 brdom5 10524 brdom4 10525 nqpr 11009 ltexprlem4 11034 reclem2pr 11043 hash1to3 14452 trclublem 14942 fnpr2ob 17504 drsdirfi 18258 toprntopon 22427 2ndcsb 22953 fbssint 23342 isfil2 23360 alexsubALTlem3 23553 lpbl 24012 metustfbas 24066 lrrecfr 27427 ex-natded9.26-2 29673 19.9d2rf 31711 rexunirn 31732 f1ocnt 32013 fsumiunle 32035 fmcncfil 32911 esumiun 33092 0elsiga 33112 ddemeas 33234 bnj168 33741 bnj593 33756 bnj607 33927 bnj600 33930 bnj916 33944 fineqvpow 34096 lfuhgr3 34110 cusgredgex 34112 loop1cycl 34128 umgr2cycl 34132 fundmpss 34738 exisym1 35309 bj-sylge 35501 bj-19.12 35639 bj-equs45fv 35689 bj-snsetex 35844 bj-snglss 35851 bj-snglex 35854 bj-bm1.3ii 35945 bj-restn0 35971 bj-ccinftydisj 36094 mptsnunlem 36219 pibt2 36298 wl-cbvmotv 36382 wl-moae 36385 wl-nax6im 36387 iscard4 42284 ismnushort 43060 spsbce-2 43140 iotaexeu 43177 iotasbc 43178 relopabVD 43662 ax6e2ndeqVD 43670 2uasbanhVD 43672 ax6e2ndeqALT 43692 fnchoice 43713 rfcnnnub 43720 stoweidlem35 44751 stoweidlem57 44773 mo0sn 47500 |
Copyright terms: Public domain | W3C validator |