![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1877 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1841 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 |
This theorem depends on definitions: df-bi 199 df-ex 1824 |
This theorem is referenced by: 2eximi 1879 eximii 1880 exa1 1881 exanOLD 1907 exsimpl 1913 exsimpr 1914 19.29r2 1922 19.29x 1923 19.35 1924 19.40-2 1933 exlimiv 1973 speimfwALT 2008 sbimi 2017 19.12 2303 ax13lem2 2338 exdistrf 2413 equs45f 2425 moimi 2557 dfmo 2615 2eu2ex 2673 reximi2 3191 cgsexg 3440 gencbvex 3452 vtocl3 3463 eqvincg 3532 n0rex 4163 axrep2 5011 bm1.3ii 5022 ax6vsep 5023 copsexg 5189 relopabi 5493 dminss 5803 imainss 5804 iotaex 6118 fv3 6466 ssimaex 6525 dffv2 6533 exfo 6643 oprabid 6955 zfrep6 7415 frxp 7570 suppimacnvss 7588 tz7.48-1 7823 enssdom 8268 fineqvlem 8464 infcntss 8524 infeq5 8833 omex 8839 rankuni 9025 scott0 9048 acni3 9205 acnnum 9210 dfac3 9279 dfac9 9295 kmlem1 9309 cflm 9409 cfcof 9433 axdc4lem 9614 axcclem 9616 ac6c4 9640 ac6s 9643 ac6s2 9645 axdclem2 9679 brdom3 9687 brdom5 9688 brdom4 9689 nqpr 10173 ltexprlem4 10198 reclem2pr 10207 hash1to3 13593 trclublem 14149 drsdirfi 17335 toprntopon 21148 2ndcsb 21672 fbssint 22061 isfil2 22079 alexsubALTlem3 22272 lpbl 22727 metustfbas 22781 ex-natded9.26-2 27869 19.9d2rf 29907 rexunirn 29915 iunrnmptss 29963 f1ocnt 30137 fsumiunle 30153 fmcncfil 30583 esumiun 30762 0elsiga 30783 ddemeas 30905 bnj168 31406 bnj593 31422 bnj607 31593 bnj600 31596 bnj916 31610 fundmpss 32265 exisym1 33014 bj-exlime 33196 bj-sbex 33225 bj-ssbequ2 33241 bj-equs45fv 33345 bj-axrep2 33374 bj-snsetex 33531 bj-snglss 33538 bj-snglex 33541 bj-bm1.3ii 33604 bj-restn0 33624 bj-ccinftydisj 33698 mptsnunlem 33788 wl-cbvmotv 33898 wl-moae 33901 wl-nax6im 33903 wl-nax6al 33904 spsbce-2 39550 iotaexeu 39588 iotasbc 39589 relopabVD 40084 ax6e2ndeqVD 40092 2uasbanhVD 40094 ax6e2ndeqALT 40114 fnchoice 40135 rfcnnnub 40142 stoweidlem35 41193 stoweidlem57 41215 |
Copyright terms: Public domain | W3C validator |