| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eximi 1836 eximii 1837 exa1 1838 exsimpl 1868 exsimpr 1869 19.29r2 1875 19.29x 1876 19.35 1877 19.40-2 1887 emptyex 1907 exlimiv 1930 speimfwALT 1964 19.12 2326 ax13lem2 2374 exdistrf 2445 equs45f 2457 dfmoeu 2529 moimi 2538 eu6 2567 2eu2ex 2636 reximi2 3062 cgsexg 3483 gencbvex 3498 eqvincg 3605 sbcg 3817 n0rex 4310 axrep2 5224 sepex 5242 bm1.3iiOLD 5244 ax6vsep 5245 copsexgw 5437 copsexg 5438 relopabi 5769 dmcoss 5920 dminss 6106 imainss 6107 iotanul2 6459 fv3 6844 ssimaex 6912 dffv2 6922 exfo 7043 oprabidw 7384 oprabid 7385 zfrep6 7897 frxp 8066 suppimacnvss 8113 tz7.48-1 8372 enssdom 8909 enfii 9110 fineqvlem 9167 enp1i 9182 infcntss 9231 infeq5 9552 rankuni 9778 scott0 9801 acni3 9960 acnnum 9965 dfac3 10034 dfac9 10050 kmlem1 10064 cflm 10163 cfcof 10187 axdc4lem 10368 axcclem 10370 ac6c4 10394 ac6s 10397 ac6s2 10399 axdclem2 10433 brdom3 10441 brdom5 10442 brdom4 10443 nqpr 10927 ltexprlem4 10952 reclem2pr 10961 hash1to3 14417 trclublem 14920 fnpr2ob 17480 drsdirfi 18229 toprntopon 22828 2ndcsb 23352 fbssint 23741 isfil2 23759 alexsubALTlem3 23952 lpbl 24407 metustfbas 24461 lrrecfr 27873 ex-natded9.26-2 30382 19.9d2rf 32431 rexunirn 32454 f1ocnt 32758 fsumiunle 32787 fmcncfil 33897 esumiun 34060 0elsiga 34080 ddemeas 34202 bnj168 34696 bnj593 34711 bnj607 34882 bnj600 34885 bnj916 34899 tz9.1regs 35066 fineqvpow 35070 onvf1odlem1 35075 wevgblacfn 35081 lfuhgr3 35092 cusgredgex 35094 loop1cycl 35109 umgr2cycl 35113 fundmpss 35739 exisym1 36397 bj-sylge 36597 bj-19.12 36734 bj-equs45fv 36784 bj-snsetex 36936 bj-snglss 36943 bj-snglex 36946 bj-bm1.3ii 37037 bj-restn0 37063 bj-ccinftydisj 37186 mptsnunlem 37311 pibt2 37390 wl-cbvmotv 37486 wl-moae 37489 wl-nax6im 37491 eu6w 42649 iscard4 43506 ismnushort 44274 spsbce-2 44354 iotaexeu 44391 iotasbc 44392 relopabVD 44874 ax6e2ndeqVD 44882 2uasbanhVD 44884 ax6e2ndeqALT 44904 fnchoice 45007 rfcnnnub 45014 stoweidlem35 46017 stoweidlem57 46039 mo0sn 48801 |
| Copyright terms: Public domain | W3C validator |