![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version |
Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
eximi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exim 1832 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1795 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 |
This theorem is referenced by: 2eximi 1834 eximii 1835 exa1 1836 exsimpl 1867 exsimpr 1868 19.29r2 1874 19.29x 1875 19.35 1876 19.40-2 1886 emptyex 1906 exlimiv 1929 speimfwALT 1964 19.12 2331 ax13lem2 2384 exdistrf 2455 equs45f 2467 dfmoeu 2539 moimi 2548 eu6 2577 2eu2ex 2646 reximi2 3085 cgsexg 3536 gencbvex 3553 eqvincg 3661 sbcg 3883 n0rex 4380 axrep2 5306 bm1.3ii 5320 ax6vsep 5321 copsexgw 5510 copsexg 5511 relopabi 5846 dminss 6184 imainss 6185 iotanul2 6543 iotaexOLD 6553 fv3 6938 ssimaex 7007 dffv2 7017 exfo 7139 oprabidw 7479 oprabid 7480 zfrep6 7995 frxp 8167 suppimacnvss 8214 tz7.48-1 8499 enssdom 9037 enfii 9252 fineqvlem 9325 enp1i 9341 infcntss 9390 infeq5 9706 omex 9712 rankuni 9932 scott0 9955 acni3 10116 acnnum 10121 dfac3 10190 dfac9 10206 kmlem1 10220 cflm 10319 cfcof 10343 axdc4lem 10524 axcclem 10526 ac6c4 10550 ac6s 10553 ac6s2 10555 axdclem2 10589 brdom3 10597 brdom5 10598 brdom4 10599 nqpr 11083 ltexprlem4 11108 reclem2pr 11117 hash1to3 14541 trclublem 15044 fnpr2ob 17618 drsdirfi 18375 toprntopon 22952 2ndcsb 23478 fbssint 23867 isfil2 23885 alexsubALTlem3 24078 lpbl 24537 metustfbas 24591 lrrecfr 27994 ex-natded9.26-2 30452 19.9d2rf 32498 rexunirn 32520 f1ocnt 32807 fsumiunle 32833 fmcncfil 33877 esumiun 34058 0elsiga 34078 ddemeas 34200 bnj168 34706 bnj593 34721 bnj607 34892 bnj600 34895 bnj916 34909 fineqvpow 35072 wevgblacfn 35076 lfuhgr3 35087 cusgredgex 35089 loop1cycl 35105 umgr2cycl 35109 fundmpss 35730 exisym1 36390 bj-sylge 36590 bj-19.12 36727 bj-equs45fv 36777 bj-snsetex 36929 bj-snglss 36936 bj-snglex 36939 bj-bm1.3ii 37030 bj-restn0 37056 bj-ccinftydisj 37179 mptsnunlem 37304 pibt2 37383 wl-cbvmotv 37467 wl-moae 37470 wl-nax6im 37472 eu6w 42631 iscard4 43495 ismnushort 44270 spsbce-2 44350 iotaexeu 44387 iotasbc 44388 relopabVD 44872 ax6e2ndeqVD 44880 2uasbanhVD 44882 ax6e2ndeqALT 44902 fnchoice 44929 rfcnnnub 44936 stoweidlem35 45956 stoweidlem57 45978 mo0sn 48547 |
Copyright terms: Public domain | W3C validator |