| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eximi | Structured version Visualization version GIF version | ||
| Description: Inference adding existential quantifier to antecedent and consequent. (Contributed by NM, 10-Jan-1993.) |
| Ref | Expression |
|---|---|
| eximi.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| eximi | ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exim 1834 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | eximi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (∃𝑥𝜑 → ∃𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: 2eximi 1836 eximii 1837 exa1 1838 exsimpl 1868 exsimpr 1869 19.29r2 1875 19.29x 1876 19.35 1877 19.40-2 1887 emptyex 1907 exlimiv 1930 speimfwALT 1964 19.12 2326 ax13lem2 2375 exdistrf 2446 equs45f 2458 dfmoeu 2530 moimi 2539 eu6 2568 2eu2ex 2637 reximi2 3063 cgsexg 3495 gencbvex 3510 eqvincg 3617 sbcg 3829 n0rex 4323 axrep2 5240 sepex 5258 bm1.3iiOLD 5260 ax6vsep 5261 copsexgw 5453 copsexg 5454 relopabi 5788 dminss 6129 imainss 6130 iotanul2 6484 iotaexOLD 6494 fv3 6879 ssimaex 6949 dffv2 6959 exfo 7080 oprabidw 7421 oprabid 7422 zfrep6 7936 frxp 8108 suppimacnvss 8155 tz7.48-1 8414 enssdom 8951 enfii 9156 fineqvlem 9216 enp1i 9231 infcntss 9280 infeq5 9597 rankuni 9823 scott0 9846 acni3 10007 acnnum 10012 dfac3 10081 dfac9 10097 kmlem1 10111 cflm 10210 cfcof 10234 axdc4lem 10415 axcclem 10417 ac6c4 10441 ac6s 10444 ac6s2 10446 axdclem2 10480 brdom3 10488 brdom5 10489 brdom4 10490 nqpr 10974 ltexprlem4 10999 reclem2pr 11008 hash1to3 14464 trclublem 14968 fnpr2ob 17528 drsdirfi 18273 toprntopon 22819 2ndcsb 23343 fbssint 23732 isfil2 23750 alexsubALTlem3 23943 lpbl 24398 metustfbas 24452 lrrecfr 27857 ex-natded9.26-2 30356 19.9d2rf 32405 rexunirn 32428 f1ocnt 32732 fsumiunle 32761 fmcncfil 33928 esumiun 34091 0elsiga 34111 ddemeas 34233 bnj168 34727 bnj593 34742 bnj607 34913 bnj600 34916 bnj916 34930 fineqvpow 35093 onvf1odlem1 35097 wevgblacfn 35103 lfuhgr3 35114 cusgredgex 35116 loop1cycl 35131 umgr2cycl 35135 fundmpss 35761 exisym1 36419 bj-sylge 36619 bj-19.12 36756 bj-equs45fv 36806 bj-snsetex 36958 bj-snglss 36965 bj-snglex 36968 bj-bm1.3ii 37059 bj-restn0 37085 bj-ccinftydisj 37208 mptsnunlem 37333 pibt2 37412 wl-cbvmotv 37508 wl-moae 37511 wl-nax6im 37513 eu6w 42671 iscard4 43529 ismnushort 44297 spsbce-2 44377 iotaexeu 44414 iotasbc 44415 relopabVD 44897 ax6e2ndeqVD 44905 2uasbanhVD 44907 ax6e2ndeqALT 44927 fnchoice 45030 rfcnnnub 45037 stoweidlem35 46040 stoweidlem57 46062 mo0sn 48808 |
| Copyright terms: Public domain | W3C validator |