Proof of Theorem bnj1489
Step | Hyp | Ref
| Expression |
1 | | bnj1489.12 |
. 2
⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
2 | | bnj1489.10 |
. . . 4
⊢ 𝑃 = ∪
𝐻 |
3 | | bnj1489.7 |
. . . . . . . 8
⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
4 | | bnj1489.6 |
. . . . . . . . 9
⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
5 | | bnj1364 33008 |
. . . . . . . . . 10
⊢ (𝑅 FrSe 𝐴 → 𝑅 Se 𝐴) |
6 | | df-bnj13 32670 |
. . . . . . . . . 10
⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
7 | 5, 6 | sylib 217 |
. . . . . . . . 9
⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
8 | 4, 7 | bnj832 32738 |
. . . . . . . 8
⊢ (𝜓 → ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
9 | 3, 8 | bnj835 32739 |
. . . . . . 7
⊢ (𝜒 → ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
10 | | bnj1489.5 |
. . . . . . . 8
⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
11 | 10, 3 | bnj1212 32779 |
. . . . . . 7
⊢ (𝜒 → 𝑥 ∈ 𝐴) |
12 | 9, 11 | bnj1294 32797 |
. . . . . 6
⊢ (𝜒 → pred(𝑥, 𝐴, 𝑅) ∈ V) |
13 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝜓 |
14 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑦 𝑥 ∈ 𝐷 |
15 | | nfra1 3144 |
. . . . . . . . 9
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥 |
16 | 13, 14, 15 | nf3an 1904 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥) |
17 | 3, 16 | nfxfr 1855 |
. . . . . . 7
⊢
Ⅎ𝑦𝜒 |
18 | 4 | simplbi 498 |
. . . . . . . . . . 11
⊢ (𝜓 → 𝑅 FrSe 𝐴) |
19 | 3, 18 | bnj835 32739 |
. . . . . . . . . 10
⊢ (𝜒 → 𝑅 FrSe 𝐴) |
20 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴) |
21 | | bnj1489.1 |
. . . . . . . . . . 11
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
22 | | bnj1489.2 |
. . . . . . . . . . 11
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
23 | | bnj1489.3 |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
24 | | bnj1489.4 |
. . . . . . . . . . 11
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
25 | | bnj1489.8 |
. . . . . . . . . . 11
⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
26 | 21, 22, 23, 24, 10, 4, 3, 25 | bnj1388 33013 |
. . . . . . . . . 10
⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′) |
27 | 26 | r19.21bi 3134 |
. . . . . . . . 9
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′) |
28 | | nfv 1917 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥 𝑅 FrSe 𝐴 |
29 | | nfsbc1v 3736 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜏 |
30 | 25, 29 | nfxfr 1855 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥𝜏′ |
31 | 30 | nfex 2318 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥∃𝑓𝜏′ |
32 | 28, 31 | nfan 1902 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥(𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) |
33 | 30 | nfeuw 2593 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥∃!𝑓𝜏′ |
34 | 32, 33 | nfim 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑥((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′) |
35 | | sneq 4571 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → {𝑥} = {𝑦}) |
36 | | bnj1318 33005 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅)) |
37 | 35, 36 | uneq12d 4098 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) |
38 | 37 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
39 | 38 | anbi2d 629 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))) |
40 | 21, 22, 23, 24, 25 | bnj1373 33010 |
. . . . . . . . . . . . . 14
⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
41 | 39, 40 | bitr4di 289 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ 𝜏′)) |
42 | 41 | exbidv 1924 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃𝑓𝜏′)) |
43 | 42 | anbi2d 629 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ (𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′))) |
44 | 41 | eubidv 2586 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (∃!𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃!𝑓𝜏′)) |
45 | 43, 44 | imbi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′))) |
46 | | biid 260 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
47 | 21, 22, 23, 46 | bnj1321 33007 |
. . . . . . . . . 10
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
48 | 34, 45, 47 | chvarfv 2233 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′) |
49 | 20, 27, 48 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜒 ∧ 𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃!𝑓𝜏′) |
50 | 49 | ex 413 |
. . . . . . 7
⊢ (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃!𝑓𝜏′)) |
51 | 17, 50 | ralrimi 3141 |
. . . . . 6
⊢ (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′) |
52 | | bnj1489.9 |
. . . . . . 7
⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
53 | 52 | a1i 11 |
. . . . . 6
⊢ (𝜒 → 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) |
54 | | biid 260 |
. . . . . . 7
⊢ ((
pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′ ∧ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) ↔ ( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′ ∧ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′})) |
55 | 54 | bnj1366 32809 |
. . . . . 6
⊢ ((
pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′ ∧ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) → 𝐻 ∈ V) |
56 | 12, 51, 53, 55 | syl3anc 1370 |
. . . . 5
⊢ (𝜒 → 𝐻 ∈ V) |
57 | 56 | uniexd 7595 |
. . . 4
⊢ (𝜒 → ∪ 𝐻
∈ V) |
58 | 2, 57 | eqeltrid 2843 |
. . 3
⊢ (𝜒 → 𝑃 ∈ V) |
59 | | snex 5354 |
. . . 4
⊢
{〈𝑥, (𝐺‘𝑍)〉} ∈ V |
60 | 59 | a1i 11 |
. . 3
⊢ (𝜒 → {〈𝑥, (𝐺‘𝑍)〉} ∈ V) |
61 | 58, 60 | bnj1149 32772 |
. 2
⊢ (𝜒 → (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) ∈ V) |
62 | 1, 61 | eqeltrid 2843 |
1
⊢ (𝜒 → 𝑄 ∈ V) |