Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1489 Structured version   Visualization version   GIF version

Theorem bnj1489 33668
Description: Technical lemma for bnj60 33674. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1489.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1489.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1489.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1489.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1489.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1489.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1489.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1489.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1489.10 𝑃 = 𝐻
bnj1489.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1489 (𝜒𝑄 ∈ V)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑓,𝑥   𝐵,𝑓   𝑦,𝐷   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1489
StepHypRef Expression
1 bnj1489.12 . 2 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1489.10 . . . 4 𝑃 = 𝐻
3 bnj1489.7 . . . . . . . 8 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
4 bnj1489.6 . . . . . . . . 9 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
5 bnj1364 33640 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
6 df-bnj13 33303 . . . . . . . . . 10 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
75, 6sylib 217 . . . . . . . . 9 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
84, 7bnj832 33370 . . . . . . . 8 (𝜓 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
93, 8bnj835 33371 . . . . . . 7 (𝜒 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
10 bnj1489.5 . . . . . . . 8 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
1110, 3bnj1212 33411 . . . . . . 7 (𝜒𝑥𝐴)
129, 11bnj1294 33429 . . . . . 6 (𝜒 → pred(𝑥, 𝐴, 𝑅) ∈ V)
13 nfv 1917 . . . . . . . . 9 𝑦𝜓
14 nfv 1917 . . . . . . . . 9 𝑦 𝑥𝐷
15 nfra1 3267 . . . . . . . . 9 𝑦𝑦𝐷 ¬ 𝑦𝑅𝑥
1613, 14, 15nf3an 1904 . . . . . . . 8 𝑦(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
173, 16nfxfr 1855 . . . . . . 7 𝑦𝜒
184simplbi 498 . . . . . . . . . . 11 (𝜓𝑅 FrSe 𝐴)
193, 18bnj835 33371 . . . . . . . . . 10 (𝜒𝑅 FrSe 𝐴)
2019adantr 481 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
21 bnj1489.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1489.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1489.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1489.4 . . . . . . . . . . 11 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1489.8 . . . . . . . . . . 11 (𝜏′[𝑦 / 𝑥]𝜏)
2621, 22, 23, 24, 10, 4, 3, 25bnj1388 33645 . . . . . . . . . 10 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
2726r19.21bi 3234 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′)
28 nfv 1917 . . . . . . . . . . . 12 𝑥 𝑅 FrSe 𝐴
29 nfsbc1v 3759 . . . . . . . . . . . . . 14 𝑥[𝑦 / 𝑥]𝜏
3025, 29nfxfr 1855 . . . . . . . . . . . . 13 𝑥𝜏′
3130nfex 2317 . . . . . . . . . . . 12 𝑥𝑓𝜏′
3228, 31nfan 1902 . . . . . . . . . . 11 𝑥(𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)
3330nfeuw 2591 . . . . . . . . . . 11 𝑥∃!𝑓𝜏′
3432, 33nfim 1899 . . . . . . . . . 10 𝑥((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
35 sneq 4596 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
36 bnj1318 33637 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
3735, 36uneq12d 4124 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
3837eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3938anbi2d 629 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4021, 22, 23, 24, 25bnj1373 33642 . . . . . . . . . . . . . 14 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
4139, 40bitr4di 288 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ 𝜏′))
4241exbidv 1924 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃𝑓𝜏′))
4342anbi2d 629 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ (𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)))
4441eubidv 2584 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃!𝑓𝜏′))
4543, 44imbi12d 344 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)))
46 biid 260 . . . . . . . . . . 11 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 46bnj1321 33639 . . . . . . . . . 10 ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4834, 45, 47chvarfv 2233 . . . . . . . . 9 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
4920, 27, 48syl2anc 584 . . . . . . . 8 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃!𝑓𝜏′)
5049ex 413 . . . . . . 7 (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃!𝑓𝜏′))
5117, 50ralrimi 3240 . . . . . 6 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′)
52 bnj1489.9 . . . . . . 7 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
5352a1i 11 . . . . . 6 (𝜒𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′})
54 biid 260 . . . . . . 7 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) ↔ ( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}))
5554bnj1366 33441 . . . . . 6 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) → 𝐻 ∈ V)
5612, 51, 53, 55syl3anc 1371 . . . . 5 (𝜒𝐻 ∈ V)
5756uniexd 7679 . . . 4 (𝜒 𝐻 ∈ V)
582, 57eqeltrid 2842 . . 3 (𝜒𝑃 ∈ V)
59 snex 5388 . . . 4 {⟨𝑥, (𝐺𝑍)⟩} ∈ V
6059a1i 11 . . 3 (𝜒 → {⟨𝑥, (𝐺𝑍)⟩} ∈ V)
6158, 60bnj1149 33404 . 2 (𝜒 → (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) ∈ V)
621, 61eqeltrid 2842 1 (𝜒𝑄 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2566  {cab 2713  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  [wsbc 3739  cun 3908  wss 3910  c0 4282  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105  dom cdm 5633  cres 5635   Fn wfn 6491  cfv 6496   predc-bnj14 33300   Se w-bnj13 33302   FrSe w-bnj15 33304   trClc-bnj18 33306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-bnj17 33299  df-bnj14 33301  df-bnj13 33303  df-bnj15 33305  df-bnj18 33307  df-bnj19 33309
This theorem is referenced by:  bnj1312  33670
  Copyright terms: Public domain W3C validator