Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1489 Structured version   Visualization version   GIF version

Theorem bnj1489 33036
Description: Technical lemma for bnj60 33042. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1489.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1489.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1489.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1489.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1489.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1489.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1489.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1489.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1489.10 𝑃 = 𝐻
bnj1489.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1489 (𝜒𝑄 ∈ V)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑓,𝑥   𝐵,𝑓   𝑦,𝐷   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1489
StepHypRef Expression
1 bnj1489.12 . 2 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1489.10 . . . 4 𝑃 = 𝐻
3 bnj1489.7 . . . . . . . 8 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
4 bnj1489.6 . . . . . . . . 9 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
5 bnj1364 33008 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
6 df-bnj13 32670 . . . . . . . . . 10 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
75, 6sylib 217 . . . . . . . . 9 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
84, 7bnj832 32738 . . . . . . . 8 (𝜓 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
93, 8bnj835 32739 . . . . . . 7 (𝜒 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
10 bnj1489.5 . . . . . . . 8 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
1110, 3bnj1212 32779 . . . . . . 7 (𝜒𝑥𝐴)
129, 11bnj1294 32797 . . . . . 6 (𝜒 → pred(𝑥, 𝐴, 𝑅) ∈ V)
13 nfv 1917 . . . . . . . . 9 𝑦𝜓
14 nfv 1917 . . . . . . . . 9 𝑦 𝑥𝐷
15 nfra1 3144 . . . . . . . . 9 𝑦𝑦𝐷 ¬ 𝑦𝑅𝑥
1613, 14, 15nf3an 1904 . . . . . . . 8 𝑦(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
173, 16nfxfr 1855 . . . . . . 7 𝑦𝜒
184simplbi 498 . . . . . . . . . . 11 (𝜓𝑅 FrSe 𝐴)
193, 18bnj835 32739 . . . . . . . . . 10 (𝜒𝑅 FrSe 𝐴)
2019adantr 481 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
21 bnj1489.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1489.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1489.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1489.4 . . . . . . . . . . 11 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1489.8 . . . . . . . . . . 11 (𝜏′[𝑦 / 𝑥]𝜏)
2621, 22, 23, 24, 10, 4, 3, 25bnj1388 33013 . . . . . . . . . 10 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
2726r19.21bi 3134 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′)
28 nfv 1917 . . . . . . . . . . . 12 𝑥 𝑅 FrSe 𝐴
29 nfsbc1v 3736 . . . . . . . . . . . . . 14 𝑥[𝑦 / 𝑥]𝜏
3025, 29nfxfr 1855 . . . . . . . . . . . . 13 𝑥𝜏′
3130nfex 2318 . . . . . . . . . . . 12 𝑥𝑓𝜏′
3228, 31nfan 1902 . . . . . . . . . . 11 𝑥(𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)
3330nfeuw 2593 . . . . . . . . . . 11 𝑥∃!𝑓𝜏′
3432, 33nfim 1899 . . . . . . . . . 10 𝑥((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
35 sneq 4571 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
36 bnj1318 33005 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
3735, 36uneq12d 4098 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
3837eqeq2d 2749 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3938anbi2d 629 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4021, 22, 23, 24, 25bnj1373 33010 . . . . . . . . . . . . . 14 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
4139, 40bitr4di 289 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ 𝜏′))
4241exbidv 1924 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃𝑓𝜏′))
4342anbi2d 629 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ (𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)))
4441eubidv 2586 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃!𝑓𝜏′))
4543, 44imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)))
46 biid 260 . . . . . . . . . . 11 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 46bnj1321 33007 . . . . . . . . . 10 ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4834, 45, 47chvarfv 2233 . . . . . . . . 9 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
4920, 27, 48syl2anc 584 . . . . . . . 8 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃!𝑓𝜏′)
5049ex 413 . . . . . . 7 (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃!𝑓𝜏′))
5117, 50ralrimi 3141 . . . . . 6 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′)
52 bnj1489.9 . . . . . . 7 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
5352a1i 11 . . . . . 6 (𝜒𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′})
54 biid 260 . . . . . . 7 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) ↔ ( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}))
5554bnj1366 32809 . . . . . 6 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) → 𝐻 ∈ V)
5612, 51, 53, 55syl3anc 1370 . . . . 5 (𝜒𝐻 ∈ V)
5756uniexd 7595 . . . 4 (𝜒 𝐻 ∈ V)
582, 57eqeltrid 2843 . . 3 (𝜒𝑃 ∈ V)
59 snex 5354 . . . 4 {⟨𝑥, (𝐺𝑍)⟩} ∈ V
6059a1i 11 . . 3 (𝜒 → {⟨𝑥, (𝐺𝑍)⟩} ∈ V)
6158, 60bnj1149 32772 . 2 (𝜒 → (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) ∈ V)
621, 61eqeltrid 2843 1 (𝜒𝑄 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715  wne 2943  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  [wsbc 3716  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567   cuni 4839   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433   predc-bnj14 32667   Se w-bnj13 32669   FrSe w-bnj15 32671   trClc-bnj18 32673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-bnj17 32666  df-bnj14 32668  df-bnj13 32670  df-bnj15 32672  df-bnj18 32674  df-bnj19 32676
This theorem is referenced by:  bnj1312  33038
  Copyright terms: Public domain W3C validator