Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1489 Structured version   Visualization version   GIF version

Theorem bnj1489 31942
Description: Technical lemma for bnj60 31948. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1489.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1489.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1489.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1489.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1489.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1489.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1489.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1489.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1489.10 𝑃 = 𝐻
bnj1489.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1489 (𝜒𝑄 ∈ V)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑓,𝑥   𝐵,𝑓   𝑦,𝐷   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1489
StepHypRef Expression
1 bnj1489.12 . 2 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1489.10 . . . 4 𝑃 = 𝐻
3 bnj1489.7 . . . . . . . 8 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
4 bnj1489.6 . . . . . . . . 9 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
5 bnj1364 31914 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
6 df-bnj13 31578 . . . . . . . . . 10 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
75, 6sylib 219 . . . . . . . . 9 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
84, 7bnj832 31646 . . . . . . . 8 (𝜓 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
93, 8bnj835 31647 . . . . . . 7 (𝜒 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
10 bnj1489.5 . . . . . . . 8 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
1110, 3bnj1212 31688 . . . . . . 7 (𝜒𝑥𝐴)
129, 11bnj1294 31706 . . . . . 6 (𝜒 → pred(𝑥, 𝐴, 𝑅) ∈ V)
13 nfv 1892 . . . . . . . . 9 𝑦𝜓
14 nfv 1892 . . . . . . . . 9 𝑦 𝑥𝐷
15 nfra1 3186 . . . . . . . . 9 𝑦𝑦𝐷 ¬ 𝑦𝑅𝑥
1613, 14, 15nf3an 1883 . . . . . . . 8 𝑦(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
173, 16nfxfr 1834 . . . . . . 7 𝑦𝜒
184simplbi 498 . . . . . . . . . . 11 (𝜓𝑅 FrSe 𝐴)
193, 18bnj835 31647 . . . . . . . . . 10 (𝜒𝑅 FrSe 𝐴)
2019adantr 481 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
21 bnj1489.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1489.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1489.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1489.4 . . . . . . . . . . 11 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1489.8 . . . . . . . . . . 11 (𝜏′[𝑦 / 𝑥]𝜏)
2621, 22, 23, 24, 10, 4, 3, 25bnj1388 31919 . . . . . . . . . 10 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
2726r19.21bi 3175 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′)
28 nfv 1892 . . . . . . . . . . . 12 𝑥 𝑅 FrSe 𝐴
29 nfsbc1v 3726 . . . . . . . . . . . . . 14 𝑥[𝑦 / 𝑥]𝜏
3025, 29nfxfr 1834 . . . . . . . . . . . . 13 𝑥𝜏′
3130nfex 2306 . . . . . . . . . . . 12 𝑥𝑓𝜏′
3228, 31nfan 1881 . . . . . . . . . . 11 𝑥(𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)
3330nfeu 2639 . . . . . . . . . . 11 𝑥∃!𝑓𝜏′
3432, 33nfim 1878 . . . . . . . . . 10 𝑥((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
35 sneq 4482 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
36 bnj1318 31911 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
3735, 36uneq12d 4061 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
3837eqeq2d 2805 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3938anbi2d 628 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4021, 22, 23, 24, 25bnj1373 31916 . . . . . . . . . . . . . 14 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
4139, 40syl6bbr 290 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ 𝜏′))
4241exbidv 1899 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃𝑓𝜏′))
4342anbi2d 628 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ (𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)))
4441eubidv 2632 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃!𝑓𝜏′))
4543, 44imbi12d 346 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)))
46 biid 262 . . . . . . . . . . 11 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 46bnj1321 31913 . . . . . . . . . 10 ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4834, 45, 47chvar 2369 . . . . . . . . 9 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
4920, 27, 48syl2anc 584 . . . . . . . 8 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃!𝑓𝜏′)
5049ex 413 . . . . . . 7 (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃!𝑓𝜏′))
5117, 50ralrimi 3183 . . . . . 6 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′)
52 bnj1489.9 . . . . . . 7 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
5352a1i 11 . . . . . 6 (𝜒𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′})
54 biid 262 . . . . . . 7 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) ↔ ( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}))
5554bnj1366 31718 . . . . . 6 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) → 𝐻 ∈ V)
5612, 51, 53, 55syl3anc 1364 . . . . 5 (𝜒𝐻 ∈ V)
57 uniexg 7325 . . . . 5 (𝐻 ∈ V → 𝐻 ∈ V)
5856, 57syl 17 . . . 4 (𝜒 𝐻 ∈ V)
592, 58syl5eqel 2887 . . 3 (𝜒𝑃 ∈ V)
60 snex 5223 . . . 4 {⟨𝑥, (𝐺𝑍)⟩} ∈ V
6160a1i 11 . . 3 (𝜒 → {⟨𝑥, (𝐺𝑍)⟩} ∈ V)
6259, 61bnj1149 31681 . 2 (𝜒 → (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) ∈ V)
631, 62syl5eqel 2887 1 (𝜒𝑄 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  ∃!weu 2611  {cab 2775  wne 2984  wral 3105  wrex 3106  {crab 3109  Vcvv 3437  [wsbc 3706  cun 3857  wss 3859  c0 4211  {csn 4472  cop 4478   cuni 4745   class class class wbr 4962  dom cdm 5443  cres 5445   Fn wfn 6220  cfv 6225   predc-bnj14 31575   Se w-bnj13 31577   FrSe w-bnj15 31579   trClc-bnj18 31581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-reg 8902  ax-inf2 8950
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-om 7437  df-1o 7953  df-bnj17 31574  df-bnj14 31576  df-bnj13 31578  df-bnj15 31580  df-bnj18 31582  df-bnj19 31584
This theorem is referenced by:  bnj1312  31944
  Copyright terms: Public domain W3C validator