Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1489 Structured version   Visualization version   GIF version

Theorem bnj1489 32330
Description: Technical lemma for bnj60 32336. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1489.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1489.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1489.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1489.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1489.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1489.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1489.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1489.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1489.10 𝑃 = 𝐻
bnj1489.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1489.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
Assertion
Ref Expression
bnj1489 (𝜒𝑄 ∈ V)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝑦,𝐴,𝑓,𝑥   𝐵,𝑓   𝑦,𝐷   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥   𝑦,𝑅   𝜓,𝑦   𝜏,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑓,𝑑)   𝜒(𝑥,𝑦,𝑓,𝑑)   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑑)   𝐷(𝑥,𝑓,𝑑)   𝑃(𝑥,𝑦,𝑓,𝑑)   𝑄(𝑥,𝑦,𝑓,𝑑)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦,𝑓,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)   𝑍(𝑥,𝑦,𝑓,𝑑)   𝜏′(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1489
StepHypRef Expression
1 bnj1489.12 . 2 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
2 bnj1489.10 . . . 4 𝑃 = 𝐻
3 bnj1489.7 . . . . . . . 8 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
4 bnj1489.6 . . . . . . . . 9 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
5 bnj1364 32302 . . . . . . . . . 10 (𝑅 FrSe 𝐴𝑅 Se 𝐴)
6 df-bnj13 31963 . . . . . . . . . 10 (𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
75, 6sylib 220 . . . . . . . . 9 (𝑅 FrSe 𝐴 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
84, 7bnj832 32031 . . . . . . . 8 (𝜓 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
93, 8bnj835 32032 . . . . . . 7 (𝜒 → ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
10 bnj1489.5 . . . . . . . 8 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
1110, 3bnj1212 32073 . . . . . . 7 (𝜒𝑥𝐴)
129, 11bnj1294 32091 . . . . . 6 (𝜒 → pred(𝑥, 𝐴, 𝑅) ∈ V)
13 nfv 1915 . . . . . . . . 9 𝑦𝜓
14 nfv 1915 . . . . . . . . 9 𝑦 𝑥𝐷
15 nfra1 3221 . . . . . . . . 9 𝑦𝑦𝐷 ¬ 𝑦𝑅𝑥
1613, 14, 15nf3an 1902 . . . . . . . 8 𝑦(𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥)
173, 16nfxfr 1853 . . . . . . 7 𝑦𝜒
184simplbi 500 . . . . . . . . . . 11 (𝜓𝑅 FrSe 𝐴)
193, 18bnj835 32032 . . . . . . . . . 10 (𝜒𝑅 FrSe 𝐴)
2019adantr 483 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
21 bnj1489.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
22 bnj1489.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
23 bnj1489.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
24 bnj1489.4 . . . . . . . . . . 11 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
25 bnj1489.8 . . . . . . . . . . 11 (𝜏′[𝑦 / 𝑥]𝜏)
2621, 22, 23, 24, 10, 4, 3, 25bnj1388 32307 . . . . . . . . . 10 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃𝑓𝜏′)
2726r19.21bi 3210 . . . . . . . . 9 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃𝑓𝜏′)
28 nfv 1915 . . . . . . . . . . . 12 𝑥 𝑅 FrSe 𝐴
29 nfsbc1v 3794 . . . . . . . . . . . . . 14 𝑥[𝑦 / 𝑥]𝜏
3025, 29nfxfr 1853 . . . . . . . . . . . . 13 𝑥𝜏′
3130nfex 2343 . . . . . . . . . . . 12 𝑥𝑓𝜏′
3228, 31nfan 1900 . . . . . . . . . . 11 𝑥(𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)
3330nfeuw 2679 . . . . . . . . . . 11 𝑥∃!𝑓𝜏′
3432, 33nfim 1897 . . . . . . . . . 10 𝑥((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
35 sneq 4579 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
36 bnj1318 32299 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → trCl(𝑥, 𝐴, 𝑅) = trCl(𝑦, 𝐴, 𝑅))
3735, 36uneq12d 4142 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))
3837eqeq2d 2834 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
3938anbi2d 630 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))))
4021, 22, 23, 24, 25bnj1373 32304 . . . . . . . . . . . . . 14 (𝜏′ ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))))
4139, 40syl6bbr 291 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ 𝜏′))
4241exbidv 1922 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃𝑓𝜏′))
4342anbi2d 630 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ (𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′)))
4441eubidv 2672 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ ∃!𝑓𝜏′))
4543, 44imbi12d 347 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) ↔ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)))
46 biid 263 . . . . . . . . . . 11 ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4721, 22, 23, 46bnj1321 32301 . . . . . . . . . 10 ((𝑅 FrSe 𝐴 ∧ ∃𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) → ∃!𝑓(𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
4834, 45, 47chvarfv 2242 . . . . . . . . 9 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏′) → ∃!𝑓𝜏′)
4920, 27, 48syl2anc 586 . . . . . . . 8 ((𝜒𝑦 ∈ pred(𝑥, 𝐴, 𝑅)) → ∃!𝑓𝜏′)
5049ex 415 . . . . . . 7 (𝜒 → (𝑦 ∈ pred(𝑥, 𝐴, 𝑅) → ∃!𝑓𝜏′))
5117, 50ralrimi 3218 . . . . . 6 (𝜒 → ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′)
52 bnj1489.9 . . . . . . 7 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
5352a1i 11 . . . . . 6 (𝜒𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′})
54 biid 263 . . . . . . 7 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) ↔ ( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}))
5554bnj1366 32103 . . . . . 6 (( pred(𝑥, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ pred (𝑥, 𝐴, 𝑅)∃!𝑓𝜏′𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}) → 𝐻 ∈ V)
5612, 51, 53, 55syl3anc 1367 . . . . 5 (𝜒𝐻 ∈ V)
5756uniexd 7470 . . . 4 (𝜒 𝐻 ∈ V)
582, 57eqeltrid 2919 . . 3 (𝜒𝑃 ∈ V)
59 snex 5334 . . . 4 {⟨𝑥, (𝐺𝑍)⟩} ∈ V
6059a1i 11 . . 3 (𝜒 → {⟨𝑥, (𝐺𝑍)⟩} ∈ V)
6158, 60bnj1149 32066 . 2 (𝜒 → (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) ∈ V)
621, 61eqeltrid 2919 1 (𝜒𝑄 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  ∃!weu 2653  {cab 2801  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  [wsbc 3774  cun 3936  wss 3938  c0 4293  {csn 4569  cop 4575   cuni 4840   class class class wbr 5068  dom cdm 5557  cres 5559   Fn wfn 6352  cfv 6357   predc-bnj14 31960   Se w-bnj13 31962   FrSe w-bnj15 31964   trClc-bnj18 31966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-reg 9058  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-1o 8104  df-bnj17 31959  df-bnj14 31961  df-bnj13 31963  df-bnj15 31965  df-bnj18 31967  df-bnj19 31969
This theorem is referenced by:  bnj1312  32332
  Copyright terms: Public domain W3C validator