![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1371 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34920. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1371.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1371.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1371.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1371.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1371.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1371.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1371.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1371.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1371.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1371.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1371.11 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
Ref | Expression |
---|---|
bnj1371 | ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1371.9 | . . . . . . 7 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
2 | 1 | bnj1436 34697 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
3 | rexex 3066 | . . . . . 6 ⊢ (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ → ∃𝑦𝜏′) | |
4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦𝜏′) |
5 | bnj1371.11 | . . . . . 6 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
6 | 5 | exbii 1843 | . . . . 5 ⊢ (∃𝑦𝜏′ ↔ ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
7 | 4, 6 | sylib 217 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
8 | exsimpl 1864 | . . . 4 ⊢ (∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 𝑓 ∈ 𝐶) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 𝑓 ∈ 𝐶) |
10 | bnj1371.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
11 | 10 | eqabri 2870 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 ↔ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
12 | 11 | bnj1238 34664 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) |
13 | fnfun 6652 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
14 | 12, 13 | bnj31 34577 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) |
15 | 14 | bnj1265 34670 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) |
16 | 9, 15 | bnj593 34603 | . 2 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦Fun 𝑓) |
17 | 16 | bnj937 34629 | 1 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2703 ≠ wne 2930 ∀wral 3051 ∃wrex 3060 {crab 3419 [wsbc 3775 ∪ cun 3944 ⊆ wss 3946 ∅c0 4322 {csn 4623 〈cop 4629 ∪ cuni 4905 class class class wbr 5145 dom cdm 5674 ↾ cres 5676 Fun wfun 6540 Fn wfn 6541 ‘cfv 6546 predc-bnj14 34546 FrSe w-bnj15 34550 trClc-bnj18 34552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rex 3061 df-fn 6549 |
This theorem is referenced by: bnj1384 34890 |
Copyright terms: Public domain | W3C validator |