| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1371 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35098. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1371.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1371.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1371.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1371.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1371.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1371.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1371.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1371.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1371.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1371.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1371.11 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| Ref | Expression |
|---|---|
| bnj1371 | ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1371.9 | . . . . . . 7 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 2 | 1 | bnj1436 34875 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
| 3 | rexex 3067 | . . . . . 6 ⊢ (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ → ∃𝑦𝜏′) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦𝜏′) |
| 5 | bnj1371.11 | . . . . . 6 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 6 | 5 | exbii 1848 | . . . . 5 ⊢ (∃𝑦𝜏′ ↔ ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 7 | 4, 6 | sylib 218 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 8 | exsimpl 1868 | . . . 4 ⊢ (∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 𝑓 ∈ 𝐶) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 𝑓 ∈ 𝐶) |
| 10 | bnj1371.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 11 | 10 | eqabri 2879 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 ↔ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
| 12 | 11 | bnj1238 34842 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) |
| 13 | fnfun 6643 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
| 14 | 12, 13 | bnj31 34755 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) |
| 15 | 14 | bnj1265 34848 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) |
| 16 | 9, 15 | bnj593 34781 | . 2 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦Fun 𝑓) |
| 17 | 16 | bnj937 34807 | 1 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 [wsbc 3770 ∪ cun 3929 ⊆ wss 3931 ∅c0 4313 {csn 4606 〈cop 4612 ∪ cuni 4888 class class class wbr 5124 dom cdm 5659 ↾ cres 5661 Fun wfun 6530 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34724 FrSe w-bnj15 34728 trClc-bnj18 34730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rex 3062 df-fn 6539 |
| This theorem is referenced by: bnj1384 35068 |
| Copyright terms: Public domain | W3C validator |