|   | Mathbox for Jonathan Ben-Naim | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1371 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35077. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| bnj1371.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | 
| bnj1371.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | 
| bnj1371.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | 
| bnj1371.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) | 
| bnj1371.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} | 
| bnj1371.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) | 
| bnj1371.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) | 
| bnj1371.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) | 
| bnj1371.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | 
| bnj1371.10 | ⊢ 𝑃 = ∪ 𝐻 | 
| bnj1371.11 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | 
| Ref | Expression | 
|---|---|
| bnj1371 | ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bnj1371.9 | . . . . . . 7 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 2 | 1 | bnj1436 34854 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) | 
| 3 | rexex 3075 | . . . . . 6 ⊢ (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ → ∃𝑦𝜏′) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦𝜏′) | 
| 5 | bnj1371.11 | . . . . . 6 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 6 | 5 | exbii 1847 | . . . . 5 ⊢ (∃𝑦𝜏′ ↔ ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | 
| 7 | 4, 6 | sylib 218 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | 
| 8 | exsimpl 1867 | . . . 4 ⊢ (∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 𝑓 ∈ 𝐶) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 𝑓 ∈ 𝐶) | 
| 10 | bnj1371.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 11 | 10 | eqabri 2884 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 ↔ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) | 
| 12 | 11 | bnj1238 34821 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) | 
| 13 | fnfun 6667 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
| 14 | 12, 13 | bnj31 34734 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) | 
| 15 | 14 | bnj1265 34827 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) | 
| 16 | 9, 15 | bnj593 34760 | . 2 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦Fun 𝑓) | 
| 17 | 16 | bnj937 34786 | 1 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 ≠ wne 2939 ∀wral 3060 ∃wrex 3069 {crab 3435 [wsbc 3787 ∪ cun 3948 ⊆ wss 3950 ∅c0 4332 {csn 4625 〈cop 4631 ∪ cuni 4906 class class class wbr 5142 dom cdm 5684 ↾ cres 5686 Fun wfun 6554 Fn wfn 6555 ‘cfv 6560 predc-bnj14 34703 FrSe w-bnj15 34707 trClc-bnj18 34709 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rex 3070 df-fn 6563 | 
| This theorem is referenced by: bnj1384 35047 | 
| Copyright terms: Public domain | W3C validator |