| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏) |
| 2 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴) |
| 3 | | bnj1321.4 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| 4 | 3 | simplbi 497 |
. . . . . . . 8
⊢ (𝜏 → 𝑓 ∈ 𝐶) |
| 5 | 4 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 ∈ 𝐶) |
| 6 | | bnj1321.3 |
. . . . . . . . . . . . 13
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 7 | | nfab1 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 8 | 6, 7 | nfcxfr 2902 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝐶 |
| 9 | 8 | nfcri 2896 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓 𝑔 ∈ 𝐶 |
| 10 | | nfv 1913 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
| 11 | 9, 10 | nfan 1898 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 12 | | eleq1w 2823 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) |
| 13 | | dmeq 5913 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔) |
| 14 | 13 | eqeq1d 2738 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| 15 | 12, 14 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
| 16 | 3, 15 | bitrid 283 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝜏 ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
| 17 | 11, 16 | sbiev 2313 |
. . . . . . . . 9
⊢ ([𝑔 / 𝑓]𝜏 ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| 18 | 17 | simplbi 497 |
. . . . . . . 8
⊢ ([𝑔 / 𝑓]𝜏 → 𝑔 ∈ 𝐶) |
| 19 | 18 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔 ∈ 𝐶) |
| 20 | | bnj1321.1 |
. . . . . . . 8
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| 21 | | bnj1321.2 |
. . . . . . . 8
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 22 | | eqid 2736 |
. . . . . . . 8
⊢ (dom
𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) |
| 23 | 20, 21, 6, 22 | bnj1326 35041 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 24 | 2, 5, 19, 23 | syl3anc 1372 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
| 25 | 3 | simprbi 496 |
. . . . . . . . . 10
⊢ (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 26 | 25 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 27 | 17 | simprbi 496 |
. . . . . . . . . 10
⊢ ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 28 | 27 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 29 | 26, 28 | eqtr4d 2779 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔) |
| 30 | | bnj1322 34837 |
. . . . . . . . 9
⊢ (dom
𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓) |
| 31 | 30 | reseq2d 5996 |
. . . . . . . 8
⊢ (dom
𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓)) |
| 32 | 29, 31 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓)) |
| 33 | | releq 5785 |
. . . . . . . . 9
⊢ (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓)) |
| 34 | 20, 21, 6 | bnj66 34875 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐶 → Rel 𝑧) |
| 35 | 33, 34 | vtoclga 3576 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐶 → Rel 𝑓) |
| 36 | | resdm 6043 |
. . . . . . . 8
⊢ (Rel
𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓) |
| 37 | 5, 35, 36 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓) |
| 38 | 32, 37 | eqtrd 2776 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓) |
| 39 | | eqeq2 2748 |
. . . . . . . . . 10
⊢ (dom
𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)) |
| 40 | 30, 39 | mpbid 232 |
. . . . . . . . 9
⊢ (dom
𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔) |
| 41 | 40 | reseq2d 5996 |
. . . . . . . 8
⊢ (dom
𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔)) |
| 42 | 29, 41 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔)) |
| 43 | 20, 21, 6 | bnj66 34875 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐶 → Rel 𝑔) |
| 44 | | resdm 6043 |
. . . . . . . 8
⊢ (Rel
𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔) |
| 45 | 19, 43, 44 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔) |
| 46 | 42, 45 | eqtrd 2776 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔) |
| 47 | 24, 38, 46 | 3eqtr3d 2784 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔) |
| 48 | 47 | 3expib 1122 |
. . . 4
⊢ (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
| 49 | 48 | alrimivv 1927 |
. . 3
⊢ (𝑅 FrSe 𝐴 → ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
| 50 | 49 | adantr 480 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
| 51 | | nfv 1913 |
. . 3
⊢
Ⅎ𝑔𝜏 |
| 52 | 51 | eu2 2608 |
. 2
⊢
(∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))) |
| 53 | 1, 50, 52 | sylanbrc 583 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏) |