Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Visualization version   GIF version

Theorem bnj1321 34038
Description: Technical lemma for bnj60 34073. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1321.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1321.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1321.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1321 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1321
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 486 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏)
2 simp1 1137 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴)
3 bnj1321.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
43simplbi 499 . . . . . . . 8 (𝜏𝑓𝐶)
543ad2ant2 1135 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓𝐶)
6 bnj1321.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
7 nfab1 2906 . . . . . . . . . . . . 13 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
86, 7nfcxfr 2902 . . . . . . . . . . . 12 𝑓𝐶
98nfcri 2891 . . . . . . . . . . 11 𝑓 𝑔𝐶
10 nfv 1918 . . . . . . . . . . 11 𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10nfan 1903 . . . . . . . . . 10 𝑓(𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
12 eleq1w 2817 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
13 dmeq 5904 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
1413eqeq1d 2735 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1512, 14anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
163, 15bitrid 283 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
1711, 16sbiev 2309 . . . . . . . . 9 ([𝑔 / 𝑓]𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1817simplbi 499 . . . . . . . 8 ([𝑔 / 𝑓]𝜏𝑔𝐶)
19183ad2ant3 1136 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔𝐶)
20 bnj1321.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
21 bnj1321.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 eqid 2733 . . . . . . . 8 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
2320, 21, 6, 22bnj1326 34037 . . . . . . 7 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
242, 5, 19, 23syl3anc 1372 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
253simprbi 498 . . . . . . . . . 10 (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
26253ad2ant2 1135 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2717simprbi 498 . . . . . . . . . 10 ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
28273ad2ant3 1136 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2926, 28eqtr4d 2776 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔)
30 bnj1322 33833 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓)
3130reseq2d 5982 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
3229, 31syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
33 releq 5777 . . . . . . . . 9 (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓))
3420, 21, 6bnj66 33871 . . . . . . . . 9 (𝑧𝐶 → Rel 𝑧)
3533, 34vtoclga 3566 . . . . . . . 8 (𝑓𝐶 → Rel 𝑓)
36 resdm 6027 . . . . . . . 8 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
375, 35, 363syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓)
3832, 37eqtrd 2773 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓)
39 eqeq2 2745 . . . . . . . . . 10 (dom 𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔))
4030, 39mpbid 231 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)
4140reseq2d 5982 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4229, 41syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4320, 21, 6bnj66 33871 . . . . . . . 8 (𝑔𝐶 → Rel 𝑔)
44 resdm 6027 . . . . . . . 8 (Rel 𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔)
4519, 43, 443syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔)
4642, 45eqtrd 2773 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔)
4724, 38, 463eqtr3d 2781 . . . . 5 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)
48473expib 1123 . . . 4 (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
4948alrimivv 1932 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
5049adantr 482 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
51 nfv 1918 . . 3 𝑔𝜏
5251eu2 2606 . 2 (∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)))
531, 50, 52sylanbrc 584 1 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wex 1782  [wsb 2068  wcel 2107  ∃!weu 2563  {cab 2710  wral 3062  wrex 3071  cun 3947  cin 3948  wss 3949  {csn 4629  cop 4635  dom cdm 5677  cres 5679  Rel wrel 5682   Fn wfn 6539  cfv 6544   predc-bnj14 33699   FrSe w-bnj15 33703   trClc-bnj18 33705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-reg 9587  ax-inf2 9636
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-1o 8466  df-bnj17 33698  df-bnj14 33700  df-bnj13 33702  df-bnj15 33704  df-bnj18 33706  df-bnj19 33708
This theorem is referenced by:  bnj1489  34067
  Copyright terms: Public domain W3C validator