Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Visualization version   GIF version

Theorem bnj1321 31433
Description: Technical lemma for bnj60 31468. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1321.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1321.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1321.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1321 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1321
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏)
2 simp1 1130 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴)
3 bnj1321.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
43simplbi 485 . . . . . . . 8 (𝜏𝑓𝐶)
543ad2ant2 1128 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓𝐶)
6 bnj1321.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
7 nfab1 2915 . . . . . . . . . . . . 13 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
86, 7nfcxfr 2911 . . . . . . . . . . . 12 𝑓𝐶
98nfcri 2907 . . . . . . . . . . 11 𝑓 𝑔𝐶
10 nfv 1995 . . . . . . . . . . 11 𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10nfan 1980 . . . . . . . . . 10 𝑓(𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
12 eleq1w 2833 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
13 dmeq 5462 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
1413eqeq1d 2773 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1512, 14anbi12d 616 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
163, 15syl5bb 272 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
1711, 16sbie 2555 . . . . . . . . 9 ([𝑔 / 𝑓]𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1817simplbi 485 . . . . . . . 8 ([𝑔 / 𝑓]𝜏𝑔𝐶)
19183ad2ant3 1129 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔𝐶)
20 bnj1321.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
21 bnj1321.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 eqid 2771 . . . . . . . 8 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
2320, 21, 6, 22bnj1326 31432 . . . . . . 7 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
242, 5, 19, 23syl3anc 1476 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
253simprbi 484 . . . . . . . . . 10 (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
26253ad2ant2 1128 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2717simprbi 484 . . . . . . . . . 10 ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
28273ad2ant3 1129 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2926, 28eqtr4d 2808 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔)
30 bnj1322 31231 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓)
3130reseq2d 5534 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
3229, 31syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
33 releq 5341 . . . . . . . . 9 (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓))
3420, 21, 6bnj66 31268 . . . . . . . . 9 (𝑧𝐶 → Rel 𝑧)
3533, 34vtoclga 3423 . . . . . . . 8 (𝑓𝐶 → Rel 𝑓)
36 resdm 5582 . . . . . . . 8 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
375, 35, 363syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓)
3832, 37eqtrd 2805 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓)
39 eqeq2 2782 . . . . . . . . . 10 (dom 𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔))
4030, 39mpbid 222 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)
4140reseq2d 5534 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4229, 41syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4320, 21, 6bnj66 31268 . . . . . . . 8 (𝑔𝐶 → Rel 𝑔)
44 resdm 5582 . . . . . . . 8 (Rel 𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔)
4519, 43, 443syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔)
4642, 45eqtrd 2805 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔)
4724, 38, 463eqtr3d 2813 . . . . 5 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)
48473expib 1116 . . . 4 (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
4948alrimivv 2008 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
5049adantr 466 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
51 nfv 1995 . . 3 𝑔𝜏
5251eu2 2658 . 2 (∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)))
531, 50, 52sylanbrc 572 1 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071  wal 1629   = wceq 1631  wex 1852  [wsb 2049  wcel 2145  ∃!weu 2618  {cab 2757  wral 3061  wrex 3062  cun 3721  cin 3722  wss 3723  {csn 4316  cop 4322  dom cdm 5249  cres 5251  Rel wrel 5254   Fn wfn 6026  cfv 6031   predc-bnj14 31094   FrSe w-bnj15 31098   trClc-bnj18 31100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-reg 8653  ax-inf2 8702
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-om 7213  df-1o 7713  df-bnj17 31093  df-bnj14 31095  df-bnj13 31097  df-bnj15 31099  df-bnj18 31101  df-bnj19 31103
This theorem is referenced by:  bnj1489  31462
  Copyright terms: Public domain W3C validator