Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Visualization version   GIF version

Theorem bnj1321 35003
Description: Technical lemma for bnj60 35038. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1321.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1321.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1321.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1321 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1321
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏)
2 simp1 1136 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴)
3 bnj1321.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
43simplbi 497 . . . . . . . 8 (𝜏𝑓𝐶)
543ad2ant2 1134 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓𝐶)
6 bnj1321.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
7 nfab1 2910 . . . . . . . . . . . . 13 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
86, 7nfcxfr 2906 . . . . . . . . . . . 12 𝑓𝐶
98nfcri 2900 . . . . . . . . . . 11 𝑓 𝑔𝐶
10 nfv 1913 . . . . . . . . . . 11 𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10nfan 1898 . . . . . . . . . 10 𝑓(𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
12 eleq1w 2827 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
13 dmeq 5928 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
1413eqeq1d 2742 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1512, 14anbi12d 631 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
163, 15bitrid 283 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
1711, 16sbiev 2318 . . . . . . . . 9 ([𝑔 / 𝑓]𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1817simplbi 497 . . . . . . . 8 ([𝑔 / 𝑓]𝜏𝑔𝐶)
19183ad2ant3 1135 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔𝐶)
20 bnj1321.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
21 bnj1321.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 eqid 2740 . . . . . . . 8 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
2320, 21, 6, 22bnj1326 35002 . . . . . . 7 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
242, 5, 19, 23syl3anc 1371 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
253simprbi 496 . . . . . . . . . 10 (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
26253ad2ant2 1134 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2717simprbi 496 . . . . . . . . . 10 ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
28273ad2ant3 1135 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2926, 28eqtr4d 2783 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔)
30 bnj1322 34798 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓)
3130reseq2d 6009 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
3229, 31syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
33 releq 5800 . . . . . . . . 9 (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓))
3420, 21, 6bnj66 34836 . . . . . . . . 9 (𝑧𝐶 → Rel 𝑧)
3533, 34vtoclga 3589 . . . . . . . 8 (𝑓𝐶 → Rel 𝑓)
36 resdm 6055 . . . . . . . 8 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
375, 35, 363syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓)
3832, 37eqtrd 2780 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓)
39 eqeq2 2752 . . . . . . . . . 10 (dom 𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔))
4030, 39mpbid 232 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)
4140reseq2d 6009 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4229, 41syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4320, 21, 6bnj66 34836 . . . . . . . 8 (𝑔𝐶 → Rel 𝑔)
44 resdm 6055 . . . . . . . 8 (Rel 𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔)
4519, 43, 443syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔)
4642, 45eqtrd 2780 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔)
4724, 38, 463eqtr3d 2788 . . . . 5 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)
48473expib 1122 . . . 4 (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
4948alrimivv 1927 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
5049adantr 480 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
51 nfv 1913 . . 3 𝑔𝜏
5251eu2 2612 . 2 (∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)))
531, 50, 52sylanbrc 582 1 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  [wsb 2064  wcel 2108  ∃!weu 2571  {cab 2717  wral 3067  wrex 3076  cun 3974  cin 3975  wss 3976  {csn 4648  cop 4654  dom cdm 5700  cres 5702  Rel wrel 5705   Fn wfn 6568  cfv 6573   predc-bnj14 34664   FrSe w-bnj15 34668   trClc-bnj18 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-1o 8522  df-bnj17 34663  df-bnj14 34665  df-bnj13 34667  df-bnj15 34669  df-bnj18 34671  df-bnj19 34673
This theorem is referenced by:  bnj1489  35032
  Copyright terms: Public domain W3C validator