Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏) |
2 | | simp1 1135 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴) |
3 | | bnj1321.4 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
4 | 3 | simplbi 498 |
. . . . . . . 8
⊢ (𝜏 → 𝑓 ∈ 𝐶) |
5 | 4 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 ∈ 𝐶) |
6 | | bnj1321.3 |
. . . . . . . . . . . . 13
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
7 | | nfab1 2909 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
8 | 6, 7 | nfcxfr 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝐶 |
9 | 8 | nfcri 2894 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓 𝑔 ∈ 𝐶 |
10 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) |
11 | 9, 10 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
12 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (𝑓 ∈ 𝐶 ↔ 𝑔 ∈ 𝐶)) |
13 | | dmeq 5812 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔) |
14 | 13 | eqeq1d 2740 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
15 | 12, 14 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → ((𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
16 | 3, 15 | syl5bb 283 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → (𝜏 ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))) |
17 | 11, 16 | sbiev 2309 |
. . . . . . . . 9
⊢ ([𝑔 / 𝑓]𝜏 ↔ (𝑔 ∈ 𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
18 | 17 | simplbi 498 |
. . . . . . . 8
⊢ ([𝑔 / 𝑓]𝜏 → 𝑔 ∈ 𝐶) |
19 | 18 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔 ∈ 𝐶) |
20 | | bnj1321.1 |
. . . . . . . 8
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
21 | | bnj1321.2 |
. . . . . . . 8
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
22 | | eqid 2738 |
. . . . . . . 8
⊢ (dom
𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔) |
23 | 20, 21, 6, 22 | bnj1326 33006 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑓 ∈ 𝐶 ∧ 𝑔 ∈ 𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
24 | 2, 5, 19, 23 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔))) |
25 | 3 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
26 | 25 | 3ad2ant2 1133 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
27 | 17 | simprbi 497 |
. . . . . . . . . 10
⊢ ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
28 | 27 | 3ad2ant3 1134 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
29 | 26, 28 | eqtr4d 2781 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔) |
30 | | bnj1322 32802 |
. . . . . . . . 9
⊢ (dom
𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓) |
31 | 30 | reseq2d 5891 |
. . . . . . . 8
⊢ (dom
𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓)) |
32 | 29, 31 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓)) |
33 | | releq 5687 |
. . . . . . . . 9
⊢ (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓)) |
34 | 20, 21, 6 | bnj66 32840 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐶 → Rel 𝑧) |
35 | 33, 34 | vtoclga 3513 |
. . . . . . . 8
⊢ (𝑓 ∈ 𝐶 → Rel 𝑓) |
36 | | resdm 5936 |
. . . . . . . 8
⊢ (Rel
𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓) |
37 | 5, 35, 36 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓) |
38 | 32, 37 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓) |
39 | | eqeq2 2750 |
. . . . . . . . . 10
⊢ (dom
𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)) |
40 | 30, 39 | mpbid 231 |
. . . . . . . . 9
⊢ (dom
𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔) |
41 | 40 | reseq2d 5891 |
. . . . . . . 8
⊢ (dom
𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔)) |
42 | 29, 41 | syl 17 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔)) |
43 | 20, 21, 6 | bnj66 32840 |
. . . . . . . 8
⊢ (𝑔 ∈ 𝐶 → Rel 𝑔) |
44 | | resdm 5936 |
. . . . . . . 8
⊢ (Rel
𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔) |
45 | 19, 43, 44 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔) |
46 | 42, 45 | eqtrd 2778 |
. . . . . 6
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔) |
47 | 24, 38, 46 | 3eqtr3d 2786 |
. . . . 5
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔) |
48 | 47 | 3expib 1121 |
. . . 4
⊢ (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
49 | 48 | alrimivv 1931 |
. . 3
⊢ (𝑅 FrSe 𝐴 → ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
50 | 49 | adantr 481 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)) |
51 | | nfv 1917 |
. . 3
⊢
Ⅎ𝑔𝜏 |
52 | 51 | eu2 2611 |
. 2
⊢
(∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓∀𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))) |
53 | 1, 50, 52 | sylanbrc 583 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏) |