Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1321 Structured version   Visualization version   GIF version

Theorem bnj1321 32303
Description: Technical lemma for bnj60 32338. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1321.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1321.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1321.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1321.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
Assertion
Ref Expression
bnj1321 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Distinct variable groups:   𝐴,𝑑,𝑓,𝑥   𝐵,𝑓   𝐺,𝑑,𝑓   𝑅,𝑑,𝑓,𝑥
Allowed substitution hints:   𝜏(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝐺(𝑥)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1321
Dummy variables 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃𝑓𝜏)
2 simp1 1132 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑅 FrSe 𝐴)
3 bnj1321.4 . . . . . . . . 9 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
43simplbi 500 . . . . . . . 8 (𝜏𝑓𝐶)
543ad2ant2 1130 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓𝐶)
6 bnj1321.3 . . . . . . . . . . . . 13 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
7 nfab1 2982 . . . . . . . . . . . . 13 𝑓{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
86, 7nfcxfr 2978 . . . . . . . . . . . 12 𝑓𝐶
98nfcri 2974 . . . . . . . . . . 11 𝑓 𝑔𝐶
10 nfv 1914 . . . . . . . . . . 11 𝑓dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10nfan 1899 . . . . . . . . . 10 𝑓(𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
12 eleq1w 2898 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (𝑓𝐶𝑔𝐶))
13 dmeq 5775 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
1413eqeq1d 2826 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) ↔ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1512, 14anbi12d 632 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
163, 15syl5bb 285 . . . . . . . . . 10 (𝑓 = 𝑔 → (𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))))
1711, 16sbiev 2329 . . . . . . . . 9 ([𝑔 / 𝑓]𝜏 ↔ (𝑔𝐶 ∧ dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
1817simplbi 500 . . . . . . . 8 ([𝑔 / 𝑓]𝜏𝑔𝐶)
19183ad2ant3 1131 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑔𝐶)
20 bnj1321.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
21 bnj1321.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
22 eqid 2824 . . . . . . . 8 (dom 𝑓 ∩ dom 𝑔) = (dom 𝑓 ∩ dom 𝑔)
2320, 21, 6, 22bnj1326 32302 . . . . . . 7 ((𝑅 FrSe 𝐴𝑓𝐶𝑔𝐶) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
242, 5, 19, 23syl3anc 1367 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)))
253simprbi 499 . . . . . . . . . 10 (𝜏 → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
26253ad2ant2 1130 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2717simprbi 499 . . . . . . . . . 10 ([𝑔 / 𝑓]𝜏 → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
28273ad2ant3 1131 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑔 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
2926, 28eqtr4d 2862 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → dom 𝑓 = dom 𝑔)
30 bnj1322 32098 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑓)
3130reseq2d 5856 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
3229, 31syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑓 ↾ dom 𝑓))
33 releq 5654 . . . . . . . . 9 (𝑧 = 𝑓 → (Rel 𝑧 ↔ Rel 𝑓))
3420, 21, 6bnj66 32136 . . . . . . . . 9 (𝑧𝐶 → Rel 𝑧)
3533, 34vtoclga 3577 . . . . . . . 8 (𝑓𝐶 → Rel 𝑓)
36 resdm 5900 . . . . . . . 8 (Rel 𝑓 → (𝑓 ↾ dom 𝑓) = 𝑓)
375, 35, 363syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ dom 𝑓) = 𝑓)
3832, 37eqtrd 2859 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑓 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑓)
39 eqeq2 2836 . . . . . . . . . 10 (dom 𝑓 = dom 𝑔 → ((dom 𝑓 ∩ dom 𝑔) = dom 𝑓 ↔ (dom 𝑓 ∩ dom 𝑔) = dom 𝑔))
4030, 39mpbid 234 . . . . . . . . 9 (dom 𝑓 = dom 𝑔 → (dom 𝑓 ∩ dom 𝑔) = dom 𝑔)
4140reseq2d 5856 . . . . . . . 8 (dom 𝑓 = dom 𝑔 → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4229, 41syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = (𝑔 ↾ dom 𝑔))
4320, 21, 6bnj66 32136 . . . . . . . 8 (𝑔𝐶 → Rel 𝑔)
44 resdm 5900 . . . . . . . 8 (Rel 𝑔 → (𝑔 ↾ dom 𝑔) = 𝑔)
4519, 43, 443syl 18 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ dom 𝑔) = 𝑔)
4642, 45eqtrd 2859 . . . . . 6 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → (𝑔 ↾ (dom 𝑓 ∩ dom 𝑔)) = 𝑔)
4724, 38, 463eqtr3d 2867 . . . . 5 ((𝑅 FrSe 𝐴𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)
48473expib 1118 . . . 4 (𝑅 FrSe 𝐴 → ((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
4948alrimivv 1928 . . 3 (𝑅 FrSe 𝐴 → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
5049adantr 483 . 2 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔))
51 nfv 1914 . . 3 𝑔𝜏
5251eu2 2692 . 2 (∃!𝑓𝜏 ↔ (∃𝑓𝜏 ∧ ∀𝑓𝑔((𝜏 ∧ [𝑔 / 𝑓]𝜏) → 𝑓 = 𝑔)))
531, 50, 52sylanbrc 585 1 ((𝑅 FrSe 𝐴 ∧ ∃𝑓𝜏) → ∃!𝑓𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1534   = wceq 1536  wex 1779  [wsb 2068  wcel 2113  ∃!weu 2652  {cab 2802  wral 3141  wrex 3142  cun 3937  cin 3938  wss 3939  {csn 4570  cop 4576  dom cdm 5558  cres 5560  Rel wrel 5563   Fn wfn 6353  cfv 6358   predc-bnj14 31962   FrSe w-bnj15 31966   trClc-bnj18 31968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-reg 9059  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7584  df-1o 8105  df-bnj17 31961  df-bnj14 31963  df-bnj13 31965  df-bnj15 31967  df-bnj18 31969  df-bnj19 31971
This theorem is referenced by:  bnj1489  32332
  Copyright terms: Public domain W3C validator