Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprbi | Structured version Visualization version GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simprbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simprbi | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpi 215 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simprd 496 | 1 ⊢ (𝜑 → 𝜒) |
Copyright terms: Public domain | W3C validator |