Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj268 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj268 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancomb 1099 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) | |
2 | 1 | anbi1i 625 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜓) ∧ 𝜃)) |
3 | df-bnj17 32715 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
4 | df-bnj17 32715 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜒 ∧ 𝜓) ∧ 𝜃)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∧ w-bnj17 32714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-bnj17 32715 |
This theorem is referenced by: bnj543 32922 bnj929 32965 bnj1110 33011 |
Copyright terms: Public domain | W3C validator |