| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13312 leexp2 14112 swrdswrd 14646 pcgcd 16825 ablsubadd23 19727 ablsubsub23 19738 xmetrtri 24276 phtpcer 24927 ishl2 25303 rusgrprc 29571 clwwlknon2num 30084 ablo32 30528 ablodivdiv 30532 ablodiv32 30534 bnj268 34692 bnj945 34756 bnj944 34921 bnj969 34929 loop1cycl 35117 btwncom 35995 btwnswapid2 35999 btwnouttr 36005 cgr3permute1 36029 colinearperm1 36043 endofsegid 36066 colinbtwnle 36099 broutsideof2 36103 outsideofcom 36109 neificl 37740 lhpexle2 39997 faosnf0.11b 43409 dfsucon 43505 uunTT1p1 44776 uun123 44790 smflimlem4 46765 ichexmpl1 47463 prproropf1o 47501 grtriproplem 47931 grtrif1o 47934 alsi-no-surprise 49778 |
| Copyright terms: Public domain | W3C validator |