![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1100 by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3anan32 1097 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: 3anrot 1100 an33reanOLD 1484 elioore 13358 leexp2 14140 swrdswrd 14659 pcgcd 16815 ablsubadd23 19722 ablsubsub23 19733 xmetrtri 24081 phtpcer 24735 ishl2 25111 rusgrprc 29102 clwwlknon2num 29613 ablo32 30057 ablodivdiv 30061 ablodiv32 30063 bnj268 34006 bnj945 34070 bnj944 34235 bnj969 34243 loop1cycl 34414 btwncom 35278 btwnswapid2 35282 btwnouttr 35288 cgr3permute1 35312 colinearperm1 35326 endofsegid 35349 colinbtwnle 35382 broutsideof2 35386 outsideofcom 35392 neificl 36924 lhpexle2 39184 faosnf0.11b 42480 dfsucon 42576 uunTT1p1 43857 uun123 43871 smflimlem4 45789 ichexmpl1 46436 prproropf1o 46474 alsi-no-surprise 47931 |
Copyright terms: Public domain | W3C validator |