MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ancomb Structured version   Visualization version   GIF version

Theorem 3ancomb 1098
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.)
Assertion
Ref Expression
3ancomb ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Proof of Theorem 3ancomb
StepHypRef Expression
1 df-3an 1088 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 3anan32 1096 . 2 ((𝜑𝜒𝜓) ↔ ((𝜑𝜓) ∧ 𝜒))
31, 2bitr4i 278 1 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anrot  1099  elioore  13278  leexp2  14078  swrdswrd  14611  pcgcd  16790  ablsubadd23  19692  ablsubsub23  19703  xmetrtri  24241  phtpcer  24892  ishl2  25268  rusgrprc  29536  clwwlknon2num  30049  ablo32  30493  ablodivdiv  30497  ablodiv32  30499  bnj268  34676  bnj945  34740  bnj944  34905  bnj969  34913  loop1cycl  35114  btwncom  35992  btwnswapid2  35996  btwnouttr  36002  cgr3permute1  36026  colinearperm1  36040  endofsegid  36063  colinbtwnle  36096  broutsideof2  36100  outsideofcom  36106  neificl  37737  lhpexle2  39993  faosnf0.11b  43404  dfsucon  43500  uunTT1p1  44771  uun123  44785  smflimlem4  46759  ichexmpl1  47457  prproropf1o  47495  grtriproplem  47927  grtrif1o  47930  alsi-no-surprise  49785
  Copyright terms: Public domain W3C validator