| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13275 leexp2 14078 swrdswrd 14612 pcgcd 16790 ablsubadd23 19725 ablsubsub23 19736 xmetrtri 24270 phtpcer 24921 ishl2 25297 rusgrprc 29569 clwwlknon2num 30085 ablo32 30529 ablodivdiv 30533 ablodiv32 30535 bnj268 34721 bnj945 34785 bnj944 34950 bnj969 34958 loop1cycl 35181 btwncom 36058 btwnswapid2 36062 btwnouttr 36068 cgr3permute1 36092 colinearperm1 36106 endofsegid 36129 colinbtwnle 36162 broutsideof2 36166 outsideofcom 36172 neificl 37803 lhpexle2 40119 faosnf0.11b 43530 dfsucon 43626 uunTT1p1 44896 uun123 44910 smflimlem4 46882 ichexmpl1 47579 prproropf1o 47617 grtriproplem 48049 grtrif1o 48052 alsi-no-surprise 49907 |
| Copyright terms: Public domain | W3C validator |