| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13278 leexp2 14078 swrdswrd 14611 pcgcd 16790 ablsubadd23 19692 ablsubsub23 19703 xmetrtri 24241 phtpcer 24892 ishl2 25268 rusgrprc 29536 clwwlknon2num 30049 ablo32 30493 ablodivdiv 30497 ablodiv32 30499 bnj268 34676 bnj945 34740 bnj944 34905 bnj969 34913 loop1cycl 35114 btwncom 35992 btwnswapid2 35996 btwnouttr 36002 cgr3permute1 36026 colinearperm1 36040 endofsegid 36063 colinbtwnle 36096 broutsideof2 36100 outsideofcom 36106 neificl 37737 lhpexle2 39993 faosnf0.11b 43404 dfsucon 43500 uunTT1p1 44771 uun123 44785 smflimlem4 46759 ichexmpl1 47457 prproropf1o 47495 grtriproplem 47927 grtrif1o 47930 alsi-no-surprise 49785 |
| Copyright terms: Public domain | W3C validator |