MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ancomb Structured version   Visualization version   GIF version

Theorem 3ancomb 1099
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1100 by Wolf Lammen, 9-Jun-2022.)
Assertion
Ref Expression
3ancomb ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))

Proof of Theorem 3ancomb
StepHypRef Expression
1 df-3an 1089 . 2 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
2 3anan32 1097 . 2 ((𝜑𝜒𝜓) ↔ ((𝜑𝜓) ∧ 𝜒))
31, 2bitr4i 278 1 ((𝜑𝜓𝜒) ↔ (𝜑𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089
This theorem is referenced by:  3anrot  1100  elioore  13437  leexp2  14221  swrdswrd  14753  pcgcd  16925  ablsubadd23  19855  ablsubsub23  19866  xmetrtri  24386  phtpcer  25046  ishl2  25423  rusgrprc  29626  clwwlknon2num  30137  ablo32  30581  ablodivdiv  30585  ablodiv32  30587  bnj268  34685  bnj945  34749  bnj944  34914  bnj969  34922  loop1cycl  35105  btwncom  35978  btwnswapid2  35982  btwnouttr  35988  cgr3permute1  36012  colinearperm1  36026  endofsegid  36049  colinbtwnle  36082  broutsideof2  36086  outsideofcom  36092  neificl  37713  lhpexle2  39967  faosnf0.11b  43389  dfsucon  43485  uunTT1p1  44765  uun123  44779  smflimlem4  46695  ichexmpl1  47343  prproropf1o  47381  grtriproplem  47790  grtrif1o  47793  alsi-no-surprise  48890
  Copyright terms: Public domain W3C validator