![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1100 by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1089 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3anan32 1097 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anrot 1100 elioore 13437 leexp2 14221 swrdswrd 14753 pcgcd 16925 ablsubadd23 19855 ablsubsub23 19866 xmetrtri 24386 phtpcer 25046 ishl2 25423 rusgrprc 29626 clwwlknon2num 30137 ablo32 30581 ablodivdiv 30585 ablodiv32 30587 bnj268 34685 bnj945 34749 bnj944 34914 bnj969 34922 loop1cycl 35105 btwncom 35978 btwnswapid2 35982 btwnouttr 35988 cgr3permute1 36012 colinearperm1 36026 endofsegid 36049 colinbtwnle 36082 broutsideof2 36086 outsideofcom 36092 neificl 37713 lhpexle2 39967 faosnf0.11b 43389 dfsucon 43485 uunTT1p1 44765 uun123 44779 smflimlem4 46695 ichexmpl1 47343 prproropf1o 47381 grtriproplem 47790 grtrif1o 47793 alsi-no-surprise 48890 |
Copyright terms: Public domain | W3C validator |