| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13336 leexp2 14136 swrdswrd 14670 pcgcd 16849 ablsubadd23 19743 ablsubsub23 19754 xmetrtri 24243 phtpcer 24894 ishl2 25270 rusgrprc 29518 clwwlknon2num 30034 ablo32 30478 ablodivdiv 30482 ablodiv32 30484 bnj268 34699 bnj945 34763 bnj944 34928 bnj969 34936 loop1cycl 35124 btwncom 36002 btwnswapid2 36006 btwnouttr 36012 cgr3permute1 36036 colinearperm1 36050 endofsegid 36073 colinbtwnle 36106 broutsideof2 36110 outsideofcom 36116 neificl 37747 lhpexle2 40004 faosnf0.11b 43416 dfsucon 43512 uunTT1p1 44783 uun123 44797 smflimlem4 46772 ichexmpl1 47470 prproropf1o 47508 grtriproplem 47938 grtrif1o 47941 alsi-no-surprise 49785 |
| Copyright terms: Public domain | W3C validator |