![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anrot 1099 elioore 13414 leexp2 14208 swrdswrd 14740 pcgcd 16912 ablsubadd23 19846 ablsubsub23 19857 xmetrtri 24381 phtpcer 25041 ishl2 25418 rusgrprc 29623 clwwlknon2num 30134 ablo32 30578 ablodivdiv 30582 ablodiv32 30584 bnj268 34702 bnj945 34766 bnj944 34931 bnj969 34939 loop1cycl 35122 btwncom 35996 btwnswapid2 36000 btwnouttr 36006 cgr3permute1 36030 colinearperm1 36044 endofsegid 36067 colinbtwnle 36100 broutsideof2 36104 outsideofcom 36110 neificl 37740 lhpexle2 39993 faosnf0.11b 43417 dfsucon 43513 uunTT1p1 44792 uun123 44806 smflimlem4 46730 ichexmpl1 47394 prproropf1o 47432 grtriproplem 47844 grtrif1o 47847 alsi-no-surprise 49027 |
Copyright terms: Public domain | W3C validator |