| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13312 leexp2 14112 swrdswrd 14646 pcgcd 16825 ablsubadd23 19719 ablsubsub23 19730 xmetrtri 24219 phtpcer 24870 ishl2 25246 rusgrprc 29494 clwwlknon2num 30007 ablo32 30451 ablodivdiv 30455 ablodiv32 30457 bnj268 34672 bnj945 34736 bnj944 34901 bnj969 34909 loop1cycl 35097 btwncom 35975 btwnswapid2 35979 btwnouttr 35985 cgr3permute1 36009 colinearperm1 36023 endofsegid 36046 colinbtwnle 36079 broutsideof2 36083 outsideofcom 36089 neificl 37720 lhpexle2 39977 faosnf0.11b 43389 dfsucon 43485 uunTT1p1 44756 uun123 44770 smflimlem4 46745 ichexmpl1 47443 prproropf1o 47481 grtriproplem 47911 grtrif1o 47914 alsi-no-surprise 49758 |
| Copyright terms: Public domain | W3C validator |