Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1098 by Wolf Lammen, 9-Jun-2022.) |
Ref | Expression |
---|---|
3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 1087 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
2 | 3anan32 1095 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anrot 1098 an33reanOLD 1482 elioore 13038 leexp2 13817 swrdswrd 14346 pcgcd 16507 ablsubsub23 19341 xmetrtri 23416 phtpcer 24064 ishl2 24439 rusgrprc 27860 clwwlknon2num 28370 ablo32 28812 ablodivdiv 28816 ablodiv32 28818 bnj268 32588 bnj945 32653 bnj944 32818 bnj969 32826 loop1cycl 32999 btwncom 34243 btwnswapid2 34247 btwnouttr 34253 cgr3permute1 34277 colinearperm1 34291 endofsegid 34314 colinbtwnle 34347 broutsideof2 34351 outsideofcom 34357 neificl 35838 lhpexle2 37951 dfsucon 41028 uunTT1p1 42303 uun123 42317 smflimlem4 44196 ichexmpl1 44809 prproropf1o 44847 alsi-no-surprise 46386 |
Copyright terms: Public domain | W3C validator |