| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancomb | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Revised to shorten 3anrot 1099 by Wolf Lammen, 9-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | 3anan32 1096 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 elioore 13397 leexp2 14194 swrdswrd 14728 pcgcd 16903 ablsubadd23 19799 ablsubsub23 19810 xmetrtri 24299 phtpcer 24950 ishl2 25327 rusgrprc 29575 clwwlknon2num 30091 ablo32 30535 ablodivdiv 30539 ablodiv32 30541 bnj268 34745 bnj945 34809 bnj944 34974 bnj969 34982 loop1cycl 35164 btwncom 36037 btwnswapid2 36041 btwnouttr 36047 cgr3permute1 36071 colinearperm1 36085 endofsegid 36108 colinbtwnle 36141 broutsideof2 36145 outsideofcom 36151 neificl 37782 lhpexle2 40034 faosnf0.11b 43426 dfsucon 43522 uunTT1p1 44793 uun123 44807 smflimlem4 46783 ichexmpl1 47463 prproropf1o 47501 grtriproplem 47931 grtrif1o 47934 alsi-no-surprise 49640 |
| Copyright terms: Public domain | W3C validator |