Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj543 Structured version   Visualization version   GIF version

Theorem bnj543 34694
Description: Technical lemma for bnj852 34722. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj543.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj543.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj543.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj543.4 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj543.5 (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
Assertion
Ref Expression
bnj543 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj543
StepHypRef Expression
1 bnj257 34508 . . . . . . 7 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑓 Fn 𝑚𝑛 = suc 𝑚))
2 bnj268 34510 . . . . . . 7 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑓 Fn 𝑚𝑛 = suc 𝑚) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
31, 2bitri 274 . . . . . 6 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
4 bnj253 34505 . . . . . 6 (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
5 bnj256 34507 . . . . . 6 (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
63, 4, 53bitr3i 300 . . . . 5 ((((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
7 bnj256 34507 . . . . . 6 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
873anbi1i 1154 . . . . 5 (((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
9 bnj543.4 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
10 bnj170 34499 . . . . . . 7 ((𝑓 Fn 𝑚𝜑′𝜓′) ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚))
119, 10bitri 274 . . . . . 6 (𝜏 ↔ ((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚))
12 bnj543.5 . . . . . . 7 (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚))
13 3anan32 1094 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝𝑚) ↔ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
1412, 13bitri 274 . . . . . 6 (𝜎 ↔ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚))
1511, 14anbi12i 626 . . . . 5 ((𝜏𝜎) ↔ (((𝜑′𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚)))
166, 8, 153bitr4ri 303 . . . 4 ((𝜏𝜎) ↔ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
1716anbi2i 621 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜏𝜎)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)))
18 3anass 1092 . . 3 ((𝑅 FrSe 𝐴𝜏𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏𝜎)))
19 bnj252 34504 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)))
2017, 18, 193bitr4i 302 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚))
21 df-suc 6381 . . . . . . 7 suc 𝑚 = (𝑚 ∪ {𝑚})
2221eqeq2i 2738 . . . . . 6 (𝑛 = suc 𝑚𝑛 = (𝑚 ∪ {𝑚}))
23223anbi2i 1155 . . . . 5 (((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))
2423anbi2i 621 . . . 4 ((𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)))
25 bnj252 34504 . . . 4 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)))
2624, 19, 253bitr4i 302 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))
27 bnj543.1 . . . 4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
28 bnj543.2 . . . 4 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
29 bnj543.3 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
30 biid 260 . . . 4 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
3127, 28, 29, 30bnj535 34691 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
3226, 31sylbi 216 . 2 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ∧ 𝑛 = suc 𝑚𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
3320, 32sylbi 216 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  cun 3944  c0 4324  {csn 4632  cop 4638   ciun 5000  suc csuc 6377   Fn wfn 6548  cfv 6553  ωcom 7875  w-bnj17 34487   predc-bnj14 34489   FrSe w-bnj15 34493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pr 5432  ax-un 7745  ax-reg 9631
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-tr 5270  df-id 5579  df-eprel 5585  df-po 5593  df-so 5594  df-fr 5636  df-we 5638  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-ord 6378  df-on 6379  df-lim 6380  df-suc 6381  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-om 7876  df-bnj17 34488  df-bnj14 34490  df-bnj13 34492  df-bnj15 34494
This theorem is referenced by:  bnj544  34695
  Copyright terms: Public domain W3C validator