Proof of Theorem bnj543
Step | Hyp | Ref
| Expression |
1 | | bnj257 32586 |
. . . . . . 7
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚)) |
2 | | bnj268 32588 |
. . . . . . 7
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) |
3 | 1, 2 | bitri 274 |
. . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) |
4 | | bnj253 32583 |
. . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) |
5 | | bnj256 32585 |
. . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) |
6 | 3, 4, 5 | 3bitr3i 300 |
. . . . 5
⊢ ((((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) |
7 | | bnj256 32585 |
. . . . . 6
⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) |
8 | 7 | 3anbi1i 1155 |
. . . . 5
⊢ (((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) |
9 | | bnj543.4 |
. . . . . . 7
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) |
10 | | bnj170 32577 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚)) |
11 | 9, 10 | bitri 274 |
. . . . . 6
⊢ (𝜏 ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚)) |
12 | | bnj543.5 |
. . . . . . 7
⊢ (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) |
13 | | 3anan32 1095 |
. . . . . . 7
⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) ↔ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) |
14 | 12, 13 | bitri 274 |
. . . . . 6
⊢ (𝜎 ↔ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) |
15 | 11, 14 | anbi12i 626 |
. . . . 5
⊢ ((𝜏 ∧ 𝜎) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) |
16 | 6, 8, 15 | 3bitr4ri 303 |
. . . 4
⊢ ((𝜏 ∧ 𝜎) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) |
17 | 16 | anbi2i 622 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚))) |
18 | | 3anass 1093 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎))) |
19 | | bnj252 32582 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚))) |
20 | 17, 18, 19 | 3bitr4i 302 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) |
21 | | df-suc 6257 |
. . . . . . 7
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) |
22 | 21 | eqeq2i 2751 |
. . . . . 6
⊢ (𝑛 = suc 𝑚 ↔ 𝑛 = (𝑚 ∪ {𝑚})) |
23 | 22 | 3anbi2i 1156 |
. . . . 5
⊢ (((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)) |
24 | 23 | anbi2i 622 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))) |
25 | | bnj252 32582 |
. . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))) |
26 | 24, 19, 25 | 3bitr4i 302 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)) |
27 | | bnj543.1 |
. . . 4
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) |
28 | | bnj543.2 |
. . . 4
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
29 | | bnj543.3 |
. . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) |
30 | | biid 260 |
. . . 4
⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) |
31 | 27, 28, 29, 30 | bnj535 32770 |
. . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛) |
32 | 26, 31 | sylbi 216 |
. 2
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛) |
33 | 20, 32 | sylbi 216 |
1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |