Proof of Theorem bnj543
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj257 34721 | . . . . . . 7
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚)) | 
| 2 |  | bnj268 34723 | . . . . . . 7
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑓 Fn 𝑚 ∧ 𝑛 = suc 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) | 
| 3 | 1, 2 | bitri 275 | . . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) | 
| 4 |  | bnj253 34718 | . . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) | 
| 5 |  | bnj256 34720 | . . . . . 6
⊢ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚 ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) | 
| 6 | 3, 4, 5 | 3bitr3i 301 | . . . . 5
⊢ ((((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) | 
| 7 |  | bnj256 34720 | . . . . . 6
⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ ((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚))) | 
| 8 | 7 | 3anbi1i 1158 | . . . . 5
⊢ (((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (((𝜑′ ∧ 𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) | 
| 9 |  | bnj543.4 | . . . . . . 7
⊢ (𝜏 ↔ (𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′)) | 
| 10 |  | bnj170 34712 | . . . . . . 7
⊢ ((𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′) ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚)) | 
| 11 | 9, 10 | bitri 275 | . . . . . 6
⊢ (𝜏 ↔ ((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚)) | 
| 12 |  | bnj543.5 | . . . . . . 7
⊢ (𝜎 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚)) | 
| 13 |  | 3anan32 1097 | . . . . . . 7
⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚) ↔ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) | 
| 14 | 12, 13 | bitri 275 | . . . . . 6
⊢ (𝜎 ↔ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚)) | 
| 15 | 11, 14 | anbi12i 628 | . . . . 5
⊢ ((𝜏 ∧ 𝜎) ↔ (((𝜑′ ∧ 𝜓′) ∧ 𝑓 Fn 𝑚) ∧ ((𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚))) | 
| 16 | 6, 8, 15 | 3bitr4ri 304 | . . . 4
⊢ ((𝜏 ∧ 𝜎) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) | 
| 17 | 16 | anbi2i 623 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚))) | 
| 18 |  | 3anass 1095 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜏 ∧ 𝜎))) | 
| 19 |  | bnj252 34717 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚))) | 
| 20 | 17, 18, 19 | 3bitr4i 303 | . 2
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) | 
| 21 |  | df-suc 6390 | . . . . . . 7
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) | 
| 22 | 21 | eqeq2i 2750 | . . . . . 6
⊢ (𝑛 = suc 𝑚 ↔ 𝑛 = (𝑚 ∪ {𝑚})) | 
| 23 | 22 | 3anbi2i 1159 | . . . . 5
⊢ (((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)) | 
| 24 | 23 | anbi2i 623 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚)) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))) | 
| 25 |  | bnj252 34717 | . . . 4
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚))) | 
| 26 | 24, 19, 25 | 3bitr4i 303 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) ↔ (𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚)) | 
| 27 |  | bnj543.1 | . . . 4
⊢ (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅)) | 
| 28 |  | bnj543.2 | . . . 4
⊢ (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑚 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | 
| 29 |  | bnj543.3 | . . . 4
⊢ 𝐺 = (𝑓 ∪ {〈𝑚, ∪ 𝑦 ∈ (𝑓‘𝑝) pred(𝑦, 𝐴, 𝑅)〉}) | 
| 30 |  | biid 261 | . . . 4
⊢ ((𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚)) | 
| 31 | 27, 28, 29, 30 | bnj535 34904 | . . 3
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛) | 
| 32 | 26, 31 | sylbi 217 | . 2
⊢ ((𝑅 FrSe 𝐴 ∧ (𝜑′ ∧ 𝜓′ ∧ 𝑚 ∈ ω ∧ 𝑝 ∈ 𝑚) ∧ 𝑛 = suc 𝑚 ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛) | 
| 33 | 20, 32 | sylbi 217 | 1
⊢ ((𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎) → 𝐺 Fn 𝑛) |