Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj258 Structured version   Visualization version   GIF version

Theorem bnj258 32736
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj258 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))

Proof of Theorem bnj258
StepHypRef Expression
1 bnj257 32735 . 2 ((𝜑𝜓𝜒𝜃) ↔ (𝜑𝜓𝜃𝜒))
2 df-bnj17 32715 . 2 ((𝜑𝜓𝜃𝜒) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))
31, 2bitri 275 1 ((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜃) ∧ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  w3a 1087  w-bnj17 32714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-bnj17 32715
This theorem is referenced by:  bnj707  32784  bnj1019  32808  bnj556  32929  bnj594  32941  bnj1018g  32992  bnj1018  32993  bnj1110  33011
  Copyright terms: Public domain W3C validator