Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj258 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj258 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj257 32735 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒)) | |
2 | df-bnj17 32715 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜃) ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1087 ∧ w-bnj17 32714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-bnj17 32715 |
This theorem is referenced by: bnj707 32784 bnj1019 32808 bnj556 32929 bnj594 32941 bnj1018g 32992 bnj1018 32993 bnj1110 33011 |
Copyright terms: Public domain | W3C validator |