Proof of Theorem bnj929
Step | Hyp | Ref
| Expression |
1 | | bnj645 32261 |
. 2
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → 𝜑) |
2 | | bnj334 32223 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) ↔ (𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝜑)) |
3 | | bnj257 32217 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝜑) ↔ (𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜑 ∧ 𝑝 = suc 𝑛)) |
4 | 2, 3 | bitri 278 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) ↔ (𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜑 ∧ 𝑝 = suc 𝑛)) |
5 | | bnj345 32224 |
. . . . . 6
⊢ ((𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜑 ∧ 𝑝 = suc 𝑛) ↔ (𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜑)) |
6 | | bnj253 32214 |
. . . . . 6
⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝑛 ∈ 𝐷 ∧ 𝜑) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) ∧ 𝑛 ∈ 𝐷 ∧ 𝜑)) |
7 | 4, 5, 6 | 3bitri 300 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) ↔ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) ∧ 𝑛 ∈ 𝐷 ∧ 𝜑)) |
8 | 7 | simp1bi 1142 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → (𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛)) |
9 | | bnj929.13 |
. . . . . 6
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
10 | | bnj929.50 |
. . . . . 6
⊢ 𝐶 ∈ V |
11 | 9, 10 | bnj927 32280 |
. . . . 5
⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → 𝐺 Fn 𝑝) |
12 | 11 | bnj930 32281 |
. . . 4
⊢ ((𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛) → Fun 𝐺) |
13 | 8, 12 | syl 17 |
. . 3
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → Fun 𝐺) |
14 | 9 | bnj931 32282 |
. . . 4
⊢ 𝑓 ⊆ 𝐺 |
15 | 14 | a1i 11 |
. . 3
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → 𝑓 ⊆ 𝐺) |
16 | | bnj268 32219 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝜑) ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑)) |
17 | | bnj253 32214 |
. . . . . 6
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝜑) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛) ∧ 𝑝 = suc 𝑛 ∧ 𝜑)) |
18 | 16, 17 | bitr3i 280 |
. . . . 5
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) ↔ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛) ∧ 𝑝 = suc 𝑛 ∧ 𝜑)) |
19 | 18 | simp1bi 1142 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛)) |
20 | | fndm 6441 |
. . . . 5
⊢ (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛) |
21 | | bnj929.10 |
. . . . . 6
⊢ 𝐷 = (ω ∖
{∅}) |
22 | 21 | bnj529 32252 |
. . . . 5
⊢ (𝑛 ∈ 𝐷 → ∅ ∈ 𝑛) |
23 | | eleq2 2840 |
. . . . . 6
⊢ (dom
𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛)) |
24 | 23 | biimpar 481 |
. . . . 5
⊢ ((dom
𝑓 = 𝑛 ∧ ∅ ∈ 𝑛) → ∅ ∈ dom 𝑓) |
25 | 20, 22, 24 | syl2anr 599 |
. . . 4
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛) → ∅ ∈ dom 𝑓) |
26 | 19, 25 | syl 17 |
. . 3
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → ∅ ∈ dom 𝑓) |
27 | 13, 15, 26 | bnj1502 32360 |
. 2
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → (𝐺‘∅) = (𝑓‘∅)) |
28 | | bnj929.1 |
. . 3
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
29 | | bnj929.4 |
. . 3
⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
30 | | bnj929.7 |
. . 3
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
31 | 9 | bnj918 32277 |
. . 3
⊢ 𝐺 ∈ V |
32 | 28, 29, 30, 31 | bnj934 32447 |
. 2
⊢ ((𝜑 ∧ (𝐺‘∅) = (𝑓‘∅)) → 𝜑″) |
33 | 1, 27, 32 | syl2anc 587 |
1
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑓 Fn 𝑛 ∧ 𝜑) → 𝜑″) |