Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj929 Structured version   Visualization version   GIF version

Theorem bnj929 32916
Description: Technical lemma for bnj69 32990. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj929.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj929.4 (𝜑′[𝑝 / 𝑛]𝜑)
bnj929.7 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj929.10 𝐷 = (ω ∖ {∅})
bnj929.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
bnj929.50 𝐶 ∈ V
Assertion
Ref Expression
bnj929 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″)
Distinct variable groups:   𝐴,𝑓,𝑛   𝑅,𝑓,𝑛   𝑓,𝑋,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑛,𝑝)   𝐴(𝑝)   𝐶(𝑓,𝑛,𝑝)   𝐷(𝑓,𝑛,𝑝)   𝑅(𝑝)   𝐺(𝑓,𝑛,𝑝)   𝑋(𝑝)   𝜑′(𝑓,𝑛,𝑝)   𝜑″(𝑓,𝑛,𝑝)

Proof of Theorem bnj929
StepHypRef Expression
1 bnj645 32730 . 2 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑)
2 bnj334 32692 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ (𝑓 Fn 𝑛𝑛𝐷𝑝 = suc 𝑛𝜑))
3 bnj257 32686 . . . . . . 7 ((𝑓 Fn 𝑛𝑛𝐷𝑝 = suc 𝑛𝜑) ↔ (𝑓 Fn 𝑛𝑛𝐷𝜑𝑝 = suc 𝑛))
42, 3bitri 274 . . . . . 6 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ (𝑓 Fn 𝑛𝑛𝐷𝜑𝑝 = suc 𝑛))
5 bnj345 32693 . . . . . 6 ((𝑓 Fn 𝑛𝑛𝐷𝜑𝑝 = suc 𝑛) ↔ (𝑝 = suc 𝑛𝑓 Fn 𝑛𝑛𝐷𝜑))
6 bnj253 32683 . . . . . 6 ((𝑝 = suc 𝑛𝑓 Fn 𝑛𝑛𝐷𝜑) ↔ ((𝑝 = suc 𝑛𝑓 Fn 𝑛) ∧ 𝑛𝐷𝜑))
74, 5, 63bitri 297 . . . . 5 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ ((𝑝 = suc 𝑛𝑓 Fn 𝑛) ∧ 𝑛𝐷𝜑))
87simp1bi 1144 . . . 4 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → (𝑝 = suc 𝑛𝑓 Fn 𝑛))
9 bnj929.13 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
10 bnj929.50 . . . . . 6 𝐶 ∈ V
119, 10bnj927 32749 . . . . 5 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝)
1211fnfund 6534 . . . 4 ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → Fun 𝐺)
138, 12syl 17 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → Fun 𝐺)
149bnj931 32750 . . . 4 𝑓𝐺
1514a1i 11 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝑓𝐺)
16 bnj268 32688 . . . . . 6 ((𝑛𝐷𝑓 Fn 𝑛𝑝 = suc 𝑛𝜑) ↔ (𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑))
17 bnj253 32683 . . . . . 6 ((𝑛𝐷𝑓 Fn 𝑛𝑝 = suc 𝑛𝜑) ↔ ((𝑛𝐷𝑓 Fn 𝑛) ∧ 𝑝 = suc 𝑛𝜑))
1816, 17bitr3i 276 . . . . 5 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) ↔ ((𝑛𝐷𝑓 Fn 𝑛) ∧ 𝑝 = suc 𝑛𝜑))
1918simp1bi 1144 . . . 4 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → (𝑛𝐷𝑓 Fn 𝑛))
20 fndm 6536 . . . . 5 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21 bnj929.10 . . . . . 6 𝐷 = (ω ∖ {∅})
2221bnj529 32721 . . . . 5 (𝑛𝐷 → ∅ ∈ 𝑛)
23 eleq2 2827 . . . . . 6 (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛))
2423biimpar 478 . . . . 5 ((dom 𝑓 = 𝑛 ∧ ∅ ∈ 𝑛) → ∅ ∈ dom 𝑓)
2520, 22, 24syl2anr 597 . . . 4 ((𝑛𝐷𝑓 Fn 𝑛) → ∅ ∈ dom 𝑓)
2619, 25syl 17 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → ∅ ∈ dom 𝑓)
2713, 15, 26bnj1502 32828 . 2 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → (𝐺‘∅) = (𝑓‘∅))
28 bnj929.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
29 bnj929.4 . . 3 (𝜑′[𝑝 / 𝑛]𝜑)
30 bnj929.7 . . 3 (𝜑″[𝐺 / 𝑓]𝜑′)
319bnj918 32746 . . 3 𝐺 ∈ V
3228, 29, 30, 31bnj934 32915 . 2 ((𝜑 ∧ (𝐺‘∅) = (𝑓‘∅)) → 𝜑″)
331, 27, 32syl2anc 584 1 ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  [wsbc 3716  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  cop 4567  dom cdm 5589  suc csuc 6268  Fun wfun 6427   Fn wfn 6428  cfv 6433  ωcom 7712  w-bnj17 32665   predc-bnj14 32667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-reg 9351
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-om 7713  df-bnj17 32666
This theorem is referenced by:  bnj944  32918
  Copyright terms: Public domain W3C validator