| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj312 | Structured version Visualization version GIF version | ||
| Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj312 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 1097 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) | |
| 2 | 1 | anbi1i 624 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃) ↔ ((𝜓 ∧ 𝜑 ∧ 𝜒) ∧ 𝜃)) |
| 3 | df-bnj17 34660 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 4 | df-bnj17 34660 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜑 ∧ 𝜒) ∧ 𝜃)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∧ w-bnj17 34659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-bnj17 34660 |
| This theorem is referenced by: bnj334 34686 bnj563 34716 bnj953 34912 |
| Copyright terms: Public domain | W3C validator |