Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj334 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj334 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj290 32989 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜑 ∧ 𝜒 ∧ 𝜃 ∧ 𝜓)) | |
2 | bnj257 32986 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃 ∧ 𝜓) ↔ (𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃)) | |
3 | bnj312 32991 | . 2 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜓 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) | |
4 | 1, 2, 3 | 3bitri 296 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ (𝜒 ∧ 𝜑 ∧ 𝜓 ∧ 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ w-bnj17 32965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 df-bnj17 32966 |
This theorem is referenced by: bnj345 32993 bnj518 33165 bnj916 33212 bnj929 33215 |
Copyright terms: Public domain | W3C validator |