| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1613 f13dfv 7215 suppssfifsupp 9289 elfzmlbp 13560 elfzo2 13583 pythagtriplem2 16747 pythagtrip 16764 xpsfrnel 17484 fucinv 17901 setcinv 18015 rngcinv 20540 ringcinv 20574 xrsdsreclb 21338 ordthaus 23287 regr1lem2 23643 xmetrtri2 24260 clmvscom 25006 hlcomb 28566 nb3grpr2 29346 nb3gr2nb 29347 rusgrnumwwlkslem 29932 ablomuldiv 30514 nvscom 30591 cnvadj 31854 iocinif 32737 fzto1st 33058 psgnfzto1st 33060 bnj312 34681 cgr3permute1 36024 lineext 36052 colinbtwnle 36094 outsideofcom 36104 linecom 36126 linerflx2 36127 cdlemg33d 40691 uunT12p3 44778 ichexmpl2 47458 grtriproplem 47927 grtrif1o 47930 rngcinvALTV 48264 ringcinvALTV 48298 |
| Copyright terms: Public domain | W3C validator |