Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1094 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1093 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anrot 1098 3anrev 1099 cadcomb 1616 f13dfv 7127 suppssfifsupp 9073 elfzmlbp 13296 elfzo2 13319 pythagtriplem2 16446 pythagtrip 16463 xpsfrnel 17190 fucinv 17607 setcinv 17721 xrsdsreclb 20557 ordthaus 22443 regr1lem2 22799 xmetrtri2 23417 clmvscom 24159 hlcomb 26868 nb3grpr2 27653 nb3gr2nb 27654 rusgrnumwwlkslem 28235 ablomuldiv 28815 nvscom 28892 cnvadj 30155 iocinif 31004 fzto1st 31272 psgnfzto1st 31274 bnj312 32591 cgr3permute1 34277 lineext 34305 colinbtwnle 34347 outsideofcom 34357 linecom 34379 linerflx2 34380 cdlemg33d 38650 uunT12p3 42311 ichexmpl2 44810 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 |
Copyright terms: Public domain | W3C validator |