| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1613 f13dfv 7252 suppssfifsupp 9338 elfzmlbp 13607 elfzo2 13630 pythagtriplem2 16795 pythagtrip 16812 xpsfrnel 17532 fucinv 17945 setcinv 18059 rngcinv 20553 ringcinv 20587 xrsdsreclb 21337 ordthaus 23278 regr1lem2 23634 xmetrtri2 24251 clmvscom 24997 hlcomb 28537 nb3grpr2 29317 nb3gr2nb 29318 rusgrnumwwlkslem 29906 ablomuldiv 30488 nvscom 30565 cnvadj 31828 iocinif 32711 fzto1st 33067 psgnfzto1st 33069 bnj312 34709 cgr3permute1 36043 lineext 36071 colinbtwnle 36113 outsideofcom 36123 linecom 36145 linerflx2 36146 cdlemg33d 40710 uunT12p3 44798 ichexmpl2 47475 grtriproplem 47942 grtrif1o 47945 rngcinvALTV 48268 ringcinvALTV 48302 |
| Copyright terms: Public domain | W3C validator |