![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1096 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anrot 1101 3anrev 1102 cadcomb 1615 f13dfv 7272 suppssfifsupp 9378 elfzmlbp 13612 elfzo2 13635 pythagtriplem2 16750 pythagtrip 16767 xpsfrnel 17508 fucinv 17926 setcinv 18040 xrsdsreclb 20992 ordthaus 22888 regr1lem2 23244 xmetrtri2 23862 clmvscom 24606 hlcomb 27854 nb3grpr2 28640 nb3gr2nb 28641 rusgrnumwwlkslem 29223 ablomuldiv 29805 nvscom 29882 cnvadj 31145 iocinif 31992 fzto1st 32262 psgnfzto1st 32264 bnj312 33723 cgr3permute1 35020 lineext 35048 colinbtwnle 35090 outsideofcom 35100 linecom 35122 linerflx2 35123 cdlemg33d 39580 uunT12p3 43563 ichexmpl2 46138 rngcinv 46879 rngcinvALTV 46891 ringcinv 46930 ringcinvALTV 46954 |
Copyright terms: Public domain | W3C validator |