MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ancoma Structured version   Visualization version   GIF version

Theorem 3ancoma 1097
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3ancoma ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Proof of Theorem 3ancoma
StepHypRef Expression
1 3anan12 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
2 3anass 1094 . 2 ((𝜓𝜑𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitr4i 278 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anrot  1099  3anrev  1100  cadcomb  1614  f13dfv  7216  suppssfifsupp  9273  elfzmlbp  13543  elfzo2  13566  pythagtriplem2  16733  pythagtrip  16750  xpsfrnel  17470  fucinv  17887  setcinv  18001  rngcinv  20556  ringcinv  20590  xrsdsreclb  21354  ordthaus  23302  regr1lem2  23658  xmetrtri2  24274  clmvscom  25020  hlcomb  28584  nb3grpr2  29365  nb3gr2nb  29366  rusgrnumwwlkslem  29954  ablomuldiv  30536  nvscom  30613  cnvadj  31876  iocinif  32770  fzto1st  33081  psgnfzto1st  33083  bnj312  34747  cgr3permute1  36115  lineext  36143  colinbtwnle  36185  outsideofcom  36195  linecom  36217  linerflx2  36218  cdlemg33d  40831  uunT12p3  44921  ichexmpl2  47597  grtriproplem  48066  grtrif1o  48069  rngcinvALTV  48403  ringcinvALTV  48437
  Copyright terms: Public domain W3C validator