| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1614 f13dfv 7216 suppssfifsupp 9273 elfzmlbp 13543 elfzo2 13566 pythagtriplem2 16733 pythagtrip 16750 xpsfrnel 17470 fucinv 17887 setcinv 18001 rngcinv 20556 ringcinv 20590 xrsdsreclb 21354 ordthaus 23302 regr1lem2 23658 xmetrtri2 24274 clmvscom 25020 hlcomb 28584 nb3grpr2 29365 nb3gr2nb 29366 rusgrnumwwlkslem 29954 ablomuldiv 30536 nvscom 30613 cnvadj 31876 iocinif 32770 fzto1st 33081 psgnfzto1st 33083 bnj312 34747 cgr3permute1 36115 lineext 36143 colinbtwnle 36185 outsideofcom 36195 linecom 36217 linerflx2 36218 cdlemg33d 40831 uunT12p3 44921 ichexmpl2 47597 grtriproplem 48066 grtrif1o 48069 rngcinvALTV 48403 ringcinvALTV 48437 |
| Copyright terms: Public domain | W3C validator |