![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1610 f13dfv 7294 suppssfifsupp 9418 elfzmlbp 13676 elfzo2 13699 pythagtriplem2 16851 pythagtrip 16868 xpsfrnel 17609 fucinv 18030 setcinv 18144 rngcinv 20654 ringcinv 20688 xrsdsreclb 21449 ordthaus 23408 regr1lem2 23764 xmetrtri2 24382 clmvscom 25137 hlcomb 28626 nb3grpr2 29415 nb3gr2nb 29416 rusgrnumwwlkslem 29999 ablomuldiv 30581 nvscom 30658 cnvadj 31921 iocinif 32790 fzto1st 33106 psgnfzto1st 33108 bnj312 34705 cgr3permute1 36030 lineext 36058 colinbtwnle 36100 outsideofcom 36110 linecom 36132 linerflx2 36133 cdlemg33d 40692 uunT12p3 44800 ichexmpl2 47395 grtriproplem 47844 grtrif1o 47847 rngcinvALTV 48120 ringcinvALTV 48154 |
Copyright terms: Public domain | W3C validator |