![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1096 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1095 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anrot 1100 3anrev 1101 cadcomb 1610 f13dfv 7310 suppssfifsupp 9449 elfzmlbp 13696 elfzo2 13719 pythagtriplem2 16864 pythagtrip 16881 xpsfrnel 17622 fucinv 18043 setcinv 18157 rngcinv 20659 ringcinv 20693 xrsdsreclb 21454 ordthaus 23413 regr1lem2 23769 xmetrtri2 24387 clmvscom 25142 hlcomb 28629 nb3grpr2 29418 nb3gr2nb 29419 rusgrnumwwlkslem 30002 ablomuldiv 30584 nvscom 30661 cnvadj 31924 iocinif 32786 fzto1st 33096 psgnfzto1st 33098 bnj312 34688 cgr3permute1 36012 lineext 36040 colinbtwnle 36082 outsideofcom 36092 linecom 36114 linerflx2 36115 cdlemg33d 40666 uunT12p3 44773 ichexmpl2 47344 grtriproplem 47790 grtrif1o 47793 rngcinvALTV 47999 ringcinvALTV 48033 |
Copyright terms: Public domain | W3C validator |