Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1615 f13dfv 7146 suppssfifsupp 9143 elfzmlbp 13367 elfzo2 13390 pythagtriplem2 16518 pythagtrip 16535 xpsfrnel 17273 fucinv 17691 setcinv 17805 xrsdsreclb 20645 ordthaus 22535 regr1lem2 22891 xmetrtri2 23509 clmvscom 24253 hlcomb 26964 nb3grpr2 27750 nb3gr2nb 27751 rusgrnumwwlkslem 28334 ablomuldiv 28914 nvscom 28991 cnvadj 30254 iocinif 31102 fzto1st 31370 psgnfzto1st 31372 bnj312 32691 cgr3permute1 34350 lineext 34378 colinbtwnle 34420 outsideofcom 34430 linecom 34452 linerflx2 34453 cdlemg33d 38723 uunT12p3 42422 ichexmpl2 44922 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 |
Copyright terms: Public domain | W3C validator |