Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 277 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1613 f13dfv 7202 suppssfifsupp 9241 elfzmlbp 13468 elfzo2 13491 pythagtriplem2 16615 pythagtrip 16632 xpsfrnel 17370 fucinv 17788 setcinv 17902 xrsdsreclb 20751 ordthaus 22641 regr1lem2 22997 xmetrtri2 23615 clmvscom 24359 hlcomb 27253 nb3grpr2 28039 nb3gr2nb 28040 rusgrnumwwlkslem 28622 ablomuldiv 29202 nvscom 29279 cnvadj 30542 iocinif 31389 fzto1st 31657 psgnfzto1st 31659 bnj312 32991 cgr3permute1 34446 lineext 34474 colinbtwnle 34516 outsideofcom 34526 linecom 34548 linerflx2 34549 cdlemg33d 38985 uunT12p3 42751 ichexmpl2 45281 rngcinv 45898 rngcinvALTV 45910 ringcinv 45949 ringcinvALTV 45973 |
Copyright terms: Public domain | W3C validator |