MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ancoma Structured version   Visualization version   GIF version

Theorem 3ancoma 1097
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3ancoma ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Proof of Theorem 3ancoma
StepHypRef Expression
1 3anan12 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
2 3anass 1094 . 2 ((𝜓𝜑𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitr4i 277 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088
This theorem is referenced by:  3anrot  1099  3anrev  1100  cadcomb  1613  f13dfv  7202  suppssfifsupp  9241  elfzmlbp  13468  elfzo2  13491  pythagtriplem2  16615  pythagtrip  16632  xpsfrnel  17370  fucinv  17788  setcinv  17902  xrsdsreclb  20751  ordthaus  22641  regr1lem2  22997  xmetrtri2  23615  clmvscom  24359  hlcomb  27253  nb3grpr2  28039  nb3gr2nb  28040  rusgrnumwwlkslem  28622  ablomuldiv  29202  nvscom  29279  cnvadj  30542  iocinif  31389  fzto1st  31657  psgnfzto1st  31659  bnj312  32991  cgr3permute1  34446  lineext  34474  colinbtwnle  34516  outsideofcom  34526  linecom  34548  linerflx2  34549  cdlemg33d  38985  uunT12p3  42751  ichexmpl2  45281  rngcinv  45898  rngcinvALTV  45910  ringcinv  45949  ringcinvALTV  45973
  Copyright terms: Public domain W3C validator