| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1096 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1095 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
| This theorem is referenced by: 3anrot 1100 3anrev 1101 cadcomb 1613 f13dfv 7294 suppssfifsupp 9420 elfzmlbp 13679 elfzo2 13702 pythagtriplem2 16855 pythagtrip 16872 xpsfrnel 17607 fucinv 18021 setcinv 18135 rngcinv 20637 ringcinv 20671 xrsdsreclb 21431 ordthaus 23392 regr1lem2 23748 xmetrtri2 24366 clmvscom 25123 hlcomb 28611 nb3grpr2 29400 nb3gr2nb 29401 rusgrnumwwlkslem 29989 ablomuldiv 30571 nvscom 30648 cnvadj 31911 iocinif 32783 fzto1st 33123 psgnfzto1st 33125 bnj312 34726 cgr3permute1 36049 lineext 36077 colinbtwnle 36119 outsideofcom 36129 linecom 36151 linerflx2 36152 cdlemg33d 40711 uunT12p3 44822 ichexmpl2 47457 grtriproplem 47906 grtrif1o 47909 rngcinvALTV 48192 ringcinvALTV 48226 |
| Copyright terms: Public domain | W3C validator |