| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1613 f13dfv 7249 suppssfifsupp 9331 elfzmlbp 13600 elfzo2 13623 pythagtriplem2 16788 pythagtrip 16805 xpsfrnel 17525 fucinv 17938 setcinv 18052 rngcinv 20546 ringcinv 20580 xrsdsreclb 21330 ordthaus 23271 regr1lem2 23627 xmetrtri2 24244 clmvscom 24990 hlcomb 28530 nb3grpr2 29310 nb3gr2nb 29311 rusgrnumwwlkslem 29899 ablomuldiv 30481 nvscom 30558 cnvadj 31821 iocinif 32704 fzto1st 33060 psgnfzto1st 33062 bnj312 34702 cgr3permute1 36036 lineext 36064 colinbtwnle 36106 outsideofcom 36116 linecom 36138 linerflx2 36139 cdlemg33d 40703 uunT12p3 44791 ichexmpl2 47471 grtriproplem 47938 grtrif1o 47941 rngcinvALTV 48264 ringcinvALTV 48298 |
| Copyright terms: Public domain | W3C validator |