| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1614 f13dfv 7208 suppssfifsupp 9264 elfzmlbp 13539 elfzo2 13562 pythagtriplem2 16729 pythagtrip 16746 xpsfrnel 17466 fucinv 17883 setcinv 17997 rngcinv 20553 ringcinv 20587 xrsdsreclb 21351 ordthaus 23300 regr1lem2 23656 xmetrtri2 24272 clmvscom 25018 hlcomb 28582 nb3grpr2 29362 nb3gr2nb 29363 rusgrnumwwlkslem 29948 ablomuldiv 30530 nvscom 30607 cnvadj 31870 iocinif 32762 fzto1st 33070 psgnfzto1st 33072 bnj312 34722 cgr3permute1 36088 lineext 36116 colinbtwnle 36158 outsideofcom 36168 linecom 36190 linerflx2 36191 cdlemg33d 40754 uunT12p3 44840 ichexmpl2 47507 grtriproplem 47976 grtrif1o 47979 rngcinvALTV 48313 ringcinvALTV 48347 |
| Copyright terms: Public domain | W3C validator |