![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
Ref | Expression |
---|---|
3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anan12 1097 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
2 | 3anass 1096 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anrot 1101 3anrev 1102 cadcomb 1615 f13dfv 7272 suppssfifsupp 9378 elfzmlbp 13612 elfzo2 13635 pythagtriplem2 16750 pythagtrip 16767 xpsfrnel 17508 fucinv 17926 setcinv 18040 xrsdsreclb 20992 ordthaus 22888 regr1lem2 23244 xmetrtri2 23862 clmvscom 24606 hlcomb 27885 nb3grpr2 28671 nb3gr2nb 28672 rusgrnumwwlkslem 29254 ablomuldiv 29836 nvscom 29913 cnvadj 31176 iocinif 32023 fzto1st 32293 psgnfzto1st 32295 bnj312 33754 cgr3permute1 35051 lineext 35079 colinbtwnle 35121 outsideofcom 35131 linecom 35153 linerflx2 35154 cdlemg33d 39628 uunT12p3 43611 ichexmpl2 46186 rngcinv 46927 rngcinvALTV 46939 ringcinv 46978 ringcinvALTV 47002 |
Copyright terms: Public domain | W3C validator |