| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3ancoma | Structured version Visualization version GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.) |
| Ref | Expression |
|---|---|
| 3ancoma | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anan12 1095 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 2 | 3anass 1094 | . 2 ⊢ ((𝜓 ∧ 𝜑 ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜑 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anrot 1099 3anrev 1100 cadcomb 1613 f13dfv 7272 suppssfifsupp 9397 elfzmlbp 13661 elfzo2 13684 pythagtriplem2 16842 pythagtrip 16859 xpsfrnel 17581 fucinv 17994 setcinv 18108 rngcinv 20602 ringcinv 20636 xrsdsreclb 21386 ordthaus 23327 regr1lem2 23683 xmetrtri2 24300 clmvscom 25046 hlcomb 28587 nb3grpr2 29367 nb3gr2nb 29368 rusgrnumwwlkslem 29956 ablomuldiv 30538 nvscom 30615 cnvadj 31878 iocinif 32763 fzto1st 33119 psgnfzto1st 33121 bnj312 34748 cgr3permute1 36071 lineext 36099 colinbtwnle 36141 outsideofcom 36151 linecom 36173 linerflx2 36174 cdlemg33d 40733 uunT12p3 44793 ichexmpl2 47451 grtriproplem 47918 grtrif1o 47921 rngcinvALTV 48218 ringcinvALTV 48252 |
| Copyright terms: Public domain | W3C validator |