MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3ancoma Structured version   Visualization version   GIF version

Theorem 3ancoma 1097
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 5-Jun-2022.)
Assertion
Ref Expression
3ancoma ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))

Proof of Theorem 3ancoma
StepHypRef Expression
1 3anan12 1095 . 2 ((𝜑𝜓𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
2 3anass 1094 . 2 ((𝜓𝜑𝜒) ↔ (𝜓 ∧ (𝜑𝜒)))
31, 2bitr4i 278 1 ((𝜑𝜓𝜒) ↔ (𝜓𝜑𝜒))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  3anrot  1099  3anrev  1100  cadcomb  1613  f13dfv  7215  suppssfifsupp  9289  elfzmlbp  13560  elfzo2  13583  pythagtriplem2  16747  pythagtrip  16764  xpsfrnel  17484  fucinv  17901  setcinv  18015  rngcinv  20540  ringcinv  20574  xrsdsreclb  21338  ordthaus  23287  regr1lem2  23643  xmetrtri2  24260  clmvscom  25006  hlcomb  28566  nb3grpr2  29346  nb3gr2nb  29347  rusgrnumwwlkslem  29932  ablomuldiv  30514  nvscom  30591  cnvadj  31854  iocinif  32737  fzto1st  33058  psgnfzto1st  33060  bnj312  34681  cgr3permute1  36024  lineext  36052  colinbtwnle  36094  outsideofcom  36104  linecom  36126  linerflx2  36127  cdlemg33d  40691  uunT12p3  44778  ichexmpl2  47458  grtriproplem  47927  grtrif1o  47930  rngcinvALTV  48264  ringcinvALTV  48298
  Copyright terms: Public domain W3C validator