Proof of Theorem bnj563
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | bnj563.19 | . . 3
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | 
| 2 |  | bnj312 34726 | . . . . 5
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | 
| 3 |  | bnj252 34717 | . . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) | 
| 4 | 2, 3 | bitri 275 | . . . 4
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) | 
| 5 | 4 | simplbi 497 | . . 3
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑛 = suc 𝑚) | 
| 6 | 1, 5 | sylbi 217 | . 2
⊢ (𝜂 → 𝑛 = suc 𝑚) | 
| 7 |  | bnj563.21 | . . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) | 
| 8 | 7 | simp2bi 1147 | . . 3
⊢ (𝜌 → suc 𝑖 ∈ 𝑛) | 
| 9 | 7 | simp3bi 1148 | . . 3
⊢ (𝜌 → 𝑚 ≠ suc 𝑖) | 
| 10 | 8, 9 | jca 511 | . 2
⊢ (𝜌 → (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) | 
| 11 |  | necom 2994 | . . . 4
⊢ (𝑚 ≠ suc 𝑖 ↔ suc 𝑖 ≠ 𝑚) | 
| 12 |  | eleq2 2830 | . . . . . 6
⊢ (𝑛 = suc 𝑚 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑚)) | 
| 13 | 12 | biimpa 476 | . . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑚) | 
| 14 |  | elsuci 6451 | . . . . . . 7
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) | 
| 15 |  | orcom 871 | . . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) | 
| 16 |  | neor 3034 | . . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) | 
| 17 | 15, 16 | bitr3i 277 | . . . . . . 7
⊢ ((suc
𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) | 
| 18 | 14, 17 | sylib 218 | . . . . . 6
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) | 
| 19 | 18 | imp 406 | . . . . 5
⊢ ((suc
𝑖 ∈ suc 𝑚 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) | 
| 20 | 13, 19 | stoic3 1776 | . . . 4
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) | 
| 21 | 11, 20 | syl3an3b 1407 | . . 3
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖) → suc 𝑖 ∈ 𝑚) | 
| 22 | 21 | 3expb 1121 | . 2
⊢ ((𝑛 = suc 𝑚 ∧ (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) → suc 𝑖 ∈ 𝑚) | 
| 23 | 6, 10, 22 | syl2an 596 | 1
⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) |