Proof of Theorem bnj563
Step | Hyp | Ref
| Expression |
1 | | bnj563.19 |
. . 3
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
2 | | bnj312 32736 |
. . . . 5
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
3 | | bnj252 32727 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) |
4 | 2, 3 | bitri 275 |
. . . 4
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) |
5 | 4 | simplbi 499 |
. . 3
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑛 = suc 𝑚) |
6 | 1, 5 | sylbi 216 |
. 2
⊢ (𝜂 → 𝑛 = suc 𝑚) |
7 | | bnj563.21 |
. . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
8 | 7 | simp2bi 1146 |
. . 3
⊢ (𝜌 → suc 𝑖 ∈ 𝑛) |
9 | 7 | simp3bi 1147 |
. . 3
⊢ (𝜌 → 𝑚 ≠ suc 𝑖) |
10 | 8, 9 | jca 513 |
. 2
⊢ (𝜌 → (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
11 | | necom 2995 |
. . . 4
⊢ (𝑚 ≠ suc 𝑖 ↔ suc 𝑖 ≠ 𝑚) |
12 | | eleq2 2825 |
. . . . . 6
⊢ (𝑛 = suc 𝑚 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑚)) |
13 | 12 | biimpa 478 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑚) |
14 | | elsuci 6347 |
. . . . . . 7
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) |
15 | | orcom 868 |
. . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) |
16 | | neor 3034 |
. . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
17 | 15, 16 | bitr3i 277 |
. . . . . . 7
⊢ ((suc
𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
18 | 14, 17 | sylib 217 |
. . . . . 6
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
19 | 18 | imp 408 |
. . . . 5
⊢ ((suc
𝑖 ∈ suc 𝑚 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) |
20 | 13, 19 | stoic3 1776 |
. . . 4
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) |
21 | 11, 20 | syl3an3b 1405 |
. . 3
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖) → suc 𝑖 ∈ 𝑚) |
22 | 21 | 3expb 1120 |
. 2
⊢ ((𝑛 = suc 𝑚 ∧ (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) → suc 𝑖 ∈ 𝑚) |
23 | 6, 10, 22 | syl2an 597 |
1
⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) |