Proof of Theorem bnj563
| Step | Hyp | Ref
| Expression |
| 1 | | bnj563.19 |
. . 3
⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| 2 | | bnj312 34748 |
. . . . 5
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| 3 | | bnj252 34739 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ 𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) |
| 4 | 2, 3 | bitri 275 |
. . . 4
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) ↔ (𝑛 = suc 𝑚 ∧ (𝑚 ∈ 𝐷 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))) |
| 5 | 4 | simplbi 497 |
. . 3
⊢ ((𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝) → 𝑛 = suc 𝑚) |
| 6 | 1, 5 | sylbi 217 |
. 2
⊢ (𝜂 → 𝑛 = suc 𝑚) |
| 7 | | bnj563.21 |
. . . 4
⊢ (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
| 8 | 7 | simp2bi 1146 |
. . 3
⊢ (𝜌 → suc 𝑖 ∈ 𝑛) |
| 9 | 7 | simp3bi 1147 |
. . 3
⊢ (𝜌 → 𝑚 ≠ suc 𝑖) |
| 10 | 8, 9 | jca 511 |
. 2
⊢ (𝜌 → (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) |
| 11 | | necom 2986 |
. . . 4
⊢ (𝑚 ≠ suc 𝑖 ↔ suc 𝑖 ≠ 𝑚) |
| 12 | | eleq2 2824 |
. . . . . 6
⊢ (𝑛 = suc 𝑚 → (suc 𝑖 ∈ 𝑛 ↔ suc 𝑖 ∈ suc 𝑚)) |
| 13 | 12 | biimpa 476 |
. . . . 5
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛) → suc 𝑖 ∈ suc 𝑚) |
| 14 | | elsuci 6426 |
. . . . . . 7
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) |
| 15 | | orcom 870 |
. . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚)) |
| 16 | | neor 3025 |
. . . . . . . 8
⊢ ((suc
𝑖 = 𝑚 ∨ suc 𝑖 ∈ 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
| 17 | 15, 16 | bitr3i 277 |
. . . . . . 7
⊢ ((suc
𝑖 ∈ 𝑚 ∨ suc 𝑖 = 𝑚) ↔ (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
| 18 | 14, 17 | sylib 218 |
. . . . . 6
⊢ (suc
𝑖 ∈ suc 𝑚 → (suc 𝑖 ≠ 𝑚 → suc 𝑖 ∈ 𝑚)) |
| 19 | 18 | imp 406 |
. . . . 5
⊢ ((suc
𝑖 ∈ suc 𝑚 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) |
| 20 | 13, 19 | stoic3 1776 |
. . . 4
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ suc 𝑖 ≠ 𝑚) → suc 𝑖 ∈ 𝑚) |
| 21 | 11, 20 | syl3an3b 1407 |
. . 3
⊢ ((𝑛 = suc 𝑚 ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖) → suc 𝑖 ∈ 𝑚) |
| 22 | 21 | 3expb 1120 |
. 2
⊢ ((𝑛 = suc 𝑚 ∧ (suc 𝑖 ∈ 𝑛 ∧ 𝑚 ≠ suc 𝑖)) → suc 𝑖 ∈ 𝑚) |
| 23 | 6, 10, 22 | syl2an 596 |
1
⊢ ((𝜂 ∧ 𝜌) → suc 𝑖 ∈ 𝑚) |