Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Visualization version   GIF version

Theorem bnj953 34570
Description: Technical lemma for bnj69 34641. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj953.2 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Assertion
Ref Expression
bnj953 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 34343 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))
2 bnj251 34333 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
31, 2bitri 275 . 2 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
4 bnj953.1 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
54bnj115 34356 . . . . 5 (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sp 2172 . . . . . 6 (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → ((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
76impcom 407 . . . . 5 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
85, 7sylan2b 593 . . . 4 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
9 bnj953.2 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
109bnj956 34407 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
11 eqtr3 2754 . . . 4 (((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
128, 10, 11syl2anr 596 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
13 eqtr 2751 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1412, 13sylan2 592 . 2 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
153, 14sylbi 216 1 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1532   = wceq 1534  wcel 2099  wral 3058   ciun 4996  suc csuc 6371  cfv 6548  ωcom 7870  w-bnj17 34317   predc-bnj14 34319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-12 2167  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-iun 4998  df-bnj17 34318
This theorem is referenced by:  bnj967  34576
  Copyright terms: Public domain W3C validator