Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj705 Structured version   Visualization version   GIF version

Theorem bnj705 32733
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj705.1 (𝜑𝜏)
Assertion
Ref Expression
bnj705 ((𝜑𝜓𝜒𝜃) → 𝜏)

Proof of Theorem bnj705
StepHypRef Expression
1 bnj642 32728 . 2 ((𝜑𝜓𝜒𝜃) → 𝜑)
2 bnj705.1 . 2 (𝜑𝜏)
31, 2syl 17 1 ((𝜑𝜓𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w-bnj17 32665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-bnj17 32666
This theorem is referenced by:  bnj769  32742  bnj998  32937  bnj1006  32940
  Copyright terms: Public domain W3C validator