Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj705 | Structured version Visualization version GIF version |
Description: ∧-manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj705.1 | ⊢ (𝜑 → 𝜏) |
Ref | Expression |
---|---|
bnj705 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj642 32628 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜑) | |
2 | bnj705.1 | . 2 ⊢ (𝜑 → 𝜏) | |
3 | 1, 2 | syl 17 | 1 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w-bnj17 32565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-bnj17 32566 |
This theorem is referenced by: bnj769 32642 bnj998 32837 bnj1006 32840 |
Copyright terms: Public domain | W3C validator |