Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj769 Structured version   Visualization version   GIF version

Theorem bnj769 34776
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj769.1 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
bnj769.2 (𝜑𝜏)
Assertion
Ref Expression
bnj769 (𝜂𝜏)

Proof of Theorem bnj769
StepHypRef Expression
1 bnj769.1 . 2 (𝜂 ↔ (𝜑𝜓𝜒𝜃))
2 bnj769.2 . . 3 (𝜑𝜏)
32bnj705 34767 . 2 ((𝜑𝜓𝜒𝜃) → 𝜏)
41, 3sylbi 217 1 (𝜂𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w-bnj17 34700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-bnj17 34701
This theorem is referenced by:  bnj966  34958  bnj967  34959  bnj986  34969  bnj1053  34990  bnj1030  35001  bnj1133  35003  bnj1450  35064
  Copyright terms: Public domain W3C validator