Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj642 Structured version   Visualization version   GIF version

Theorem bnj642 34762
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj642 ((𝜑𝜓𝜒𝜃) → 𝜑)

Proof of Theorem bnj642
StepHypRef Expression
1 bnj446 34731 . 2 ((𝜑𝜓𝜒𝜃) ↔ ((𝜓𝜒𝜃) ∧ 𝜑))
21simprbi 496 1 ((𝜑𝜓𝜒𝜃) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  w-bnj17 34700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-bnj17 34701
This theorem is referenced by:  bnj705  34767  bnj1232  34817  bnj908  34945  bnj1110  34996
  Copyright terms: Public domain W3C validator