![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj998 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34986. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj998.1 | ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
bnj998.2 | ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
bnj998.3 | ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
bnj998.4 | ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
bnj998.5 | ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
bnj998.7 | ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
bnj998.8 | ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
bnj998.9 | ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
bnj998.10 | ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
bnj998.11 | ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
bnj998.12 | ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
bnj998.13 | ⊢ 𝐷 = (ω ∖ {∅}) |
bnj998.14 | ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} |
bnj998.15 | ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
bnj998.16 | ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
Ref | Expression |
---|---|
bnj998 | ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj998.4 | . . . . . 6 ⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
2 | bnj253 34680 | . . . . . . 7 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) | |
3 | 2 | simp1bi 1145 | . . . . . 6 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
4 | 1, 3 | sylbi 217 | . . . . 5 ⊢ (𝜃 → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
5 | 4 | bnj705 34729 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
6 | bnj643 34725 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒) | |
7 | bnj998.5 | . . . . . 6 ⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
8 | 3simpc 1150 | . . . . . 6 ⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) | |
9 | 7, 8 | sylbi 217 | . . . . 5 ⊢ (𝜏 → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
10 | 9 | bnj707 34731 | . . . 4 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
11 | bnj255 34681 | . . . 4 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) | |
12 | 5, 6, 10, 11 | syl3anbrc 1343 | . . 3 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
13 | bnj252 34679 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) | |
14 | 12, 13 | sylib 218 | . 2 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) |
15 | bnj998.1 | . . 3 ⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) | |
16 | bnj998.2 | . . 3 ⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) | |
17 | bnj998.3 | . . 3 ⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
18 | bnj998.7 | . . 3 ⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) | |
19 | bnj998.8 | . . 3 ⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) | |
20 | bnj998.9 | . . 3 ⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) | |
21 | bnj998.10 | . . 3 ⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) | |
22 | bnj998.11 | . . 3 ⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) | |
23 | bnj998.12 | . . 3 ⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) | |
24 | bnj998.13 | . . 3 ⊢ 𝐷 = (ω ∖ {∅}) | |
25 | bnj998.14 | . . 3 ⊢ 𝐵 = {𝑓 ∣ ∃𝑛 ∈ 𝐷 (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)} | |
26 | bnj998.15 | . . 3 ⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) | |
27 | bnj998.16 | . . 3 ⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) | |
28 | biid 261 | . . 3 ⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) | |
29 | biid 261 | . . 3 ⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛) ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) | |
30 | 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 | bnj910 34924 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝜒″) |
31 | 14, 30 | syl 17 | 1 ⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒″) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 [wsbc 3804 ∖ cdif 3973 ∪ cun 3974 ∅c0 4352 {csn 4648 〈cop 4654 ∪ ciun 5015 suc csuc 6397 Fn wfn 6568 ‘cfv 6573 ωcom 7903 ∧ w-bnj17 34662 predc-bnj14 34664 FrSe w-bnj15 34668 trClc-bnj18 34670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 df-om 7904 df-bnj17 34663 df-bnj14 34665 df-bnj13 34667 df-bnj15 34669 |
This theorem is referenced by: bnj1020 34941 |
Copyright terms: Public domain | W3C validator |