Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj998 Structured version   Visualization version   GIF version

Theorem bnj998 34954
Description: Technical lemma for bnj69 35007. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj998.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj998.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj998.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj998.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj998.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj998.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj998.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj998.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj998.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj998.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj998.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj998.13 𝐷 = (ω ∖ {∅})
bnj998.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj998.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj998.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj998 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛   𝑓,𝑝,𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑧,𝑝)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑚,𝑝)   𝑅(𝑧,𝑝)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑧,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj998
StepHypRef Expression
1 bnj998.4 . . . . . 6 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
2 bnj253 34701 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
32simp1bi 1145 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴𝑋𝐴))
41, 3sylbi 217 . . . . 5 (𝜃 → (𝑅 FrSe 𝐴𝑋𝐴))
54bnj705 34750 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝑅 FrSe 𝐴𝑋𝐴))
6 bnj643 34746 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝜒)
7 bnj998.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
8 3simpc 1150 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
97, 8sylbi 217 . . . . 5 (𝜏 → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
109bnj707 34752 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
11 bnj255 34702 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒 ∧ (𝑛 = suc 𝑚𝑝 = suc 𝑛)))
125, 6, 10, 11syl3anbrc 1344 . . 3 ((𝜃𝜒𝜏𝜂) → ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛))
13 bnj252 34700 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)))
1412, 13sylib 218 . 2 ((𝜃𝜒𝜏𝜂) → ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)))
15 bnj998.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
16 bnj998.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
17 bnj998.3 . . 3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
18 bnj998.7 . . 3 (𝜑′[𝑝 / 𝑛]𝜑)
19 bnj998.8 . . 3 (𝜓′[𝑝 / 𝑛]𝜓)
20 bnj998.9 . . 3 (𝜒′[𝑝 / 𝑛]𝜒)
21 bnj998.10 . . 3 (𝜑″[𝐺 / 𝑓]𝜑′)
22 bnj998.11 . . 3 (𝜓″[𝐺 / 𝑓]𝜓′)
23 bnj998.12 . . 3 (𝜒″[𝐺 / 𝑓]𝜒′)
24 bnj998.13 . . 3 𝐷 = (ω ∖ {∅})
25 bnj998.14 . . 3 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
26 bnj998.15 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
27 bnj998.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
28 biid 261 . . 3 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
29 biid 261 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
3015, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29bnj910 34945 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
3114, 30syl 17 1 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wral 3045  wrex 3054  [wsbc 3756  cdif 3914  cun 3915  c0 4299  {csn 4592  cop 4598   ciun 4958  suc csuc 6337   Fn wfn 6509  cfv 6514  ωcom 7845  w-bnj17 34683   predc-bnj14 34685   FrSe w-bnj15 34689   trClc-bnj18 34691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-res 5653  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-om 7846  df-bnj17 34684  df-bnj14 34686  df-bnj13 34688  df-bnj15 34690
This theorem is referenced by:  bnj1020  34962
  Copyright terms: Public domain W3C validator