Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj998 Structured version   Visualization version   GIF version

Theorem bnj998 32339
Description: Technical lemma for bnj69 32392. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj998.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj998.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj998.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj998.4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
bnj998.5 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
bnj998.7 (𝜑′[𝑝 / 𝑛]𝜑)
bnj998.8 (𝜓′[𝑝 / 𝑛]𝜓)
bnj998.9 (𝜒′[𝑝 / 𝑛]𝜒)
bnj998.10 (𝜑″[𝐺 / 𝑓]𝜑′)
bnj998.11 (𝜓″[𝐺 / 𝑓]𝜓′)
bnj998.12 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj998.13 𝐷 = (ω ∖ {∅})
bnj998.14 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj998.15 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj998.16 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj998 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Distinct variable groups:   𝐴,𝑓,𝑖,𝑚,𝑛,𝑦   𝐷,𝑓,𝑖,𝑛   𝑖,𝐺   𝑅,𝑓,𝑖,𝑚,𝑛,𝑦   𝑓,𝑋,𝑖,𝑛   𝑓,𝑝,𝑖,𝑛   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜃(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜂(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑧,𝑝)   𝐵(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐶(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑧,𝑚,𝑝)   𝑅(𝑧,𝑝)   𝐺(𝑦,𝑧,𝑓,𝑚,𝑛,𝑝)   𝑋(𝑦,𝑧,𝑚,𝑝)   𝜑′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒′(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒″(𝑦,𝑧,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj998
StepHypRef Expression
1 bnj998.4 . . . . . 6 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
2 bnj253 32084 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))
32simp1bi 1142 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴𝑋𝐴))
41, 3sylbi 220 . . . . 5 (𝜃 → (𝑅 FrSe 𝐴𝑋𝐴))
54bnj705 32134 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝑅 FrSe 𝐴𝑋𝐴))
6 bnj643 32130 . . . 4 ((𝜃𝜒𝜏𝜂) → 𝜒)
7 bnj998.5 . . . . . 6 (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))
8 3simpc 1147 . . . . . 6 ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
97, 8sylbi 220 . . . . 5 (𝜏 → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
109bnj707 32136 . . . 4 ((𝜃𝜒𝜏𝜂) → (𝑛 = suc 𝑚𝑝 = suc 𝑛))
11 bnj255 32085 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒 ∧ (𝑛 = suc 𝑚𝑝 = suc 𝑛)))
125, 6, 10, 11syl3anbrc 1340 . . 3 ((𝜃𝜒𝜏𝜂) → ((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛))
13 bnj252 32083 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ 𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)))
1412, 13sylib 221 . 2 ((𝜃𝜒𝜏𝜂) → ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)))
15 bnj998.1 . . 3 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
16 bnj998.2 . . 3 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
17 bnj998.3 . . 3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
18 bnj998.7 . . 3 (𝜑′[𝑝 / 𝑛]𝜑)
19 bnj998.8 . . 3 (𝜓′[𝑝 / 𝑛]𝜓)
20 bnj998.9 . . 3 (𝜒′[𝑝 / 𝑛]𝜒)
21 bnj998.10 . . 3 (𝜑″[𝐺 / 𝑓]𝜑′)
22 bnj998.11 . . 3 (𝜓″[𝐺 / 𝑓]𝜓′)
23 bnj998.12 . . 3 (𝜒″[𝐺 / 𝑓]𝜒′)
24 bnj998.13 . . 3 𝐷 = (ω ∖ {∅})
25 bnj998.14 . . 3 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
26 bnj998.15 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
27 bnj998.16 . . 3 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
28 biid 264 . . 3 ((𝑓 Fn 𝑛𝜑𝜓) ↔ (𝑓 Fn 𝑛𝜑𝜓))
29 biid 264 . . 3 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
3015, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29bnj910 32330 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
3114, 30syl 17 1 ((𝜃𝜒𝜏𝜂) → 𝜒″)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  {cab 2776  wral 3106  wrex 3107  [wsbc 3720  cdif 3878  cun 3879  c0 4243  {csn 4525  cop 4531   ciun 4881  suc csuc 6161   Fn wfn 6319  cfv 6324  ωcom 7560  w-bnj17 32066   predc-bnj14 32068   FrSe w-bnj15 32072   trClc-bnj18 32074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441  ax-reg 9040
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-bnj17 32067  df-bnj14 32069  df-bnj13 32071  df-bnj15 32073
This theorem is referenced by:  bnj1020  32347
  Copyright terms: Public domain W3C validator