Proof of Theorem bnj1006
Step | Hyp | Ref
| Expression |
1 | | bnj1006.6 |
. . . . 5
⊢ (𝜂 ↔ (𝑖 ∈ 𝑛 ∧ 𝑦 ∈ (𝑓‘𝑖))) |
2 | 1 | simprbi 501 |
. . . 4
⊢ (𝜂 → 𝑦 ∈ (𝑓‘𝑖)) |
3 | 2 | bnj708 32256 |
. . 3
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑦 ∈ (𝑓‘𝑖)) |
4 | | bnj1006.4 |
. . . . . . . 8
⊢ (𝜃 ↔ (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
5 | | bnj253 32203 |
. . . . . . . . 9
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅))) |
6 | 5 | simp1bi 1143 |
. . . . . . . 8
⊢ ((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ∧ 𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
7 | 4, 6 | sylbi 220 |
. . . . . . 7
⊢ (𝜃 → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
8 | 7 | bnj705 32253 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴)) |
9 | | bnj643 32249 |
. . . . . . 7
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝜒) |
10 | | bnj1006.5 |
. . . . . . . . 9
⊢ (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
11 | | 3simpc 1148 |
. . . . . . . . 9
⊢ ((𝑚 ∈ ω ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
12 | 10, 11 | sylbi 220 |
. . . . . . . 8
⊢ (𝜏 → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
13 | 12 | bnj707 32255 |
. . . . . . 7
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
14 | | 3anass 1093 |
. . . . . . 7
⊢ ((𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛) ↔ (𝜒 ∧ (𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛))) |
15 | 9, 13, 14 | sylanbrc 587 |
. . . . . 6
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) |
16 | | bnj1006.1 |
. . . . . . 7
⊢ (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅)) |
17 | | bnj1006.2 |
. . . . . . 7
⊢ (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅))) |
18 | | bnj1006.3 |
. . . . . . 7
⊢ (𝜒 ↔ (𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
19 | | bnj1006.13 |
. . . . . . 7
⊢ 𝐷 = (ω ∖
{∅}) |
20 | | bnj1006.15 |
. . . . . . 7
⊢ 𝐶 = ∪ 𝑦 ∈ (𝑓‘𝑚) pred(𝑦, 𝐴, 𝑅) |
21 | | biid 264 |
. . . . . . 7
⊢ ((𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓) ↔ (𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓)) |
22 | | biid 264 |
. . . . . . 7
⊢ ((𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛) ↔ (𝑛 ∈ 𝐷 ∧ 𝑝 = suc 𝑛 ∧ 𝑚 ∈ 𝑛)) |
23 | 16, 17, 18, 19, 20, 21, 22 | bnj969 32447 |
. . . . . 6
⊢ (((𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴) ∧ (𝜒 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 = suc 𝑛)) → 𝐶 ∈ V) |
24 | 8, 15, 23 | syl2anc 588 |
. . . . 5
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝐶 ∈ V) |
25 | 18 | bnj1235 32305 |
. . . . . 6
⊢ (𝜒 → 𝑓 Fn 𝑛) |
26 | 25 | bnj706 32254 |
. . . . 5
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑓 Fn 𝑛) |
27 | 10 | simp3bi 1145 |
. . . . . 6
⊢ (𝜏 → 𝑝 = suc 𝑛) |
28 | 27 | bnj707 32255 |
. . . . 5
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑝 = suc 𝑛) |
29 | 1 | simplbi 502 |
. . . . . 6
⊢ (𝜂 → 𝑖 ∈ 𝑛) |
30 | 29 | bnj708 32256 |
. . . . 5
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑖 ∈ 𝑛) |
31 | 24, 26, 28, 30 | bnj951 32276 |
. . . 4
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛)) |
32 | | bnj1006.16 |
. . . . 5
⊢ 𝐺 = (𝑓 ∪ {〈𝑛, 𝐶〉}) |
33 | 32 | bnj945 32274 |
. . . 4
⊢ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛 ∧ 𝑝 = suc 𝑛 ∧ 𝑖 ∈ 𝑛) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
34 | 31, 33 | syl 17 |
. . 3
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝐺‘𝑖) = (𝑓‘𝑖)) |
35 | 3, 34 | eleqtrrd 2856 |
. 2
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → 𝑦 ∈ (𝐺‘𝑖)) |
36 | | bnj1006.28 |
. . . . 5
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝)) |
37 | 36 | anim1i 618 |
. . . 4
⊢ (((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ∧ 𝑦 ∈ (𝐺‘𝑖)) → ((𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑦 ∈ (𝐺‘𝑖))) |
38 | | df-bnj17 32186 |
. . . 4
⊢ ((𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ (𝐺‘𝑖)) ↔ ((𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝) ∧ 𝑦 ∈ (𝐺‘𝑖))) |
39 | 37, 38 | sylibr 237 |
. . 3
⊢ (((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ∧ 𝑦 ∈ (𝐺‘𝑖)) → (𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ (𝐺‘𝑖))) |
40 | | bnj1006.7 |
. . . 4
⊢ (𝜑′ ↔ [𝑝 / 𝑛]𝜑) |
41 | | bnj1006.8 |
. . . 4
⊢ (𝜓′ ↔ [𝑝 / 𝑛]𝜓) |
42 | | bnj1006.9 |
. . . 4
⊢ (𝜒′ ↔ [𝑝 / 𝑛]𝜒) |
43 | | bnj1006.10 |
. . . 4
⊢ (𝜑″ ↔ [𝐺 / 𝑓]𝜑′) |
44 | | bnj1006.11 |
. . . 4
⊢ (𝜓″ ↔ [𝐺 / 𝑓]𝜓′) |
45 | | bnj1006.12 |
. . . 4
⊢ (𝜒″ ↔ [𝐺 / 𝑓]𝜒′) |
46 | 16, 17, 18, 40, 41, 42, 43, 44, 45, 20, 32 | bnj999 32459 |
. . 3
⊢ ((𝜒″ ∧ 𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑝 ∧ 𝑦 ∈ (𝐺‘𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |
47 | 39, 46 | syl 17 |
. 2
⊢ (((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) ∧ 𝑦 ∈ (𝐺‘𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |
48 | 35, 47 | mpdan 687 |
1
⊢ ((𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖)) |