MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cadbi123i Structured version   Visualization version   GIF version

Theorem cadbi123i 1613
Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.)
Hypotheses
Ref Expression
cadbii.1 (𝜑𝜓)
cadbii.2 (𝜒𝜃)
cadbii.3 (𝜏𝜂)
Assertion
Ref Expression
cadbi123i (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂))

Proof of Theorem cadbi123i
StepHypRef Expression
1 cadbii.1 . . . 4 (𝜑𝜓)
21a1i 11 . . 3 (⊤ → (𝜑𝜓))
3 cadbii.2 . . . 4 (𝜒𝜃)
43a1i 11 . . 3 (⊤ → (𝜒𝜃))
5 cadbii.3 . . . 4 (𝜏𝜂)
65a1i 11 . . 3 (⊤ → (𝜏𝜂))
72, 4, 6cadbi123d 1612 . 2 (⊤ → (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)))
87mptru 1546 1 (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wtru 1540  caddwcad 1608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-xor 1507  df-tru 1542  df-cad 1609
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator