Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cadbi123i | Structured version Visualization version GIF version |
Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadbii.1 | ⊢ (𝜑 ↔ 𝜓) |
cadbii.2 | ⊢ (𝜒 ↔ 𝜃) |
cadbii.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
cadbi123i | ⊢ (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cadbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) |
3 | cadbii.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) |
5 | cadbii.3 | . . . 4 ⊢ (𝜏 ↔ 𝜂) | |
6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝜏 ↔ 𝜂)) |
7 | 2, 4, 6 | cadbi123d 1617 | . 2 ⊢ (⊤ → (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂))) |
8 | 7 | mptru 1550 | 1 ⊢ (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊤wtru 1544 caddwcad 1613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-xor 1508 df-tru 1546 df-cad 1614 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |