|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cadbi123i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| cadbii.1 | ⊢ (𝜑 ↔ 𝜓) | 
| cadbii.2 | ⊢ (𝜒 ↔ 𝜃) | 
| cadbii.3 | ⊢ (𝜏 ↔ 𝜂) | 
| Ref | Expression | 
|---|---|
| cadbi123i | ⊢ (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cadbii.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → (𝜑 ↔ 𝜓)) | 
| 3 | cadbii.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → (𝜒 ↔ 𝜃)) | 
| 5 | cadbii.3 | . . . 4 ⊢ (𝜏 ↔ 𝜂) | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (⊤ → (𝜏 ↔ 𝜂)) | 
| 7 | 2, 4, 6 | cadbi123d 1609 | . 2 ⊢ (⊤ → (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂))) | 
| 8 | 7 | mptru 1546 | 1 ⊢ (cadd(𝜑, 𝜒, 𝜏) ↔ cadd(𝜓, 𝜃, 𝜂)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ⊤wtru 1540 caddwcad 1605 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-xor 1511 df-tru 1542 df-cad 1606 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |