Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvaliw | Structured version Visualization version GIF version |
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
Ref | Expression |
---|---|
cbvaliw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
cbvaliw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
cbvaliw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
cbvaliw | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvaliw.1 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | cbvaliw.2 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | cbvaliw.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | spimw 1975 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
5 | 1, 4 | alrimih 1827 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-ex 1784 |
This theorem is referenced by: spfw 2037 cbvalw 2039 |
Copyright terms: Public domain | W3C validator |