|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cbvaliw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) | 
| Ref | Expression | 
|---|---|
| cbvaliw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | 
| cbvaliw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | 
| cbvaliw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | 
| Ref | Expression | 
|---|---|
| cbvaliw | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvaliw.1 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | cbvaliw.2 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | cbvaliw.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | spimw 1969 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) | 
| 5 | 1, 4 | alrimih 1823 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1537 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-6 1966 | 
| This theorem depends on definitions: df-bi 207 df-ex 1779 | 
| This theorem is referenced by: spfw 2031 cbvalw 2033 | 
| Copyright terms: Public domain | W3C validator |