| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvaliw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. Part of Lemma 7 of [KalishMontague] p. 86. (Contributed by NM, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvaliw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
| cbvaliw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
| cbvaliw.3 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| cbvaliw | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvaliw.1 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | cbvaliw.2 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | cbvaliw.3 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | spimw 1970 | . 2 ⊢ (∀𝑥𝜑 → 𝜓) |
| 5 | 1, 4 | alrimih 1824 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 |
| This theorem is referenced by: spfw 2033 cbvalw 2035 |
| Copyright terms: Public domain | W3C validator |