| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version | ||
| Description: Version of equsexv 2268 with a disjoint variable condition, and of equsex 2422 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2003. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | equsalvw 2003 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
| 6 | 5 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2028 cleljust 2117 sbelx 2253 cleljustab 2716 sbhypfOLD 3524 axsepgfromrep 5264 dfid3 5551 opeliunxp 5721 opeliun2xp 5722 imai 6061 coi1 6251 opabex3d 7964 opabex3rd 7965 opabex3 7966 fsplit 8116 mapsnend 9050 dfac5lem1 10137 dfac5lem3 10139 dffix2 35923 sscoid 35931 elfuns 35933 pmapglb 39789 polval2N 39925 tfsconcat0i 43369 |
| Copyright terms: Public domain | W3C validator |