Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version |
Description: Version of equsexv 2266 with a disjoint variable condition, and of equsex 2429 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2010. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1844 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 321 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | equsalvw 2010 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
5 | 1, 4 | bitr3i 280 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
6 | 5 | con4bii 324 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 |
This theorem is referenced by: equvinv 2036 cleljust 2120 sbelx 2252 cleljustab 2738 sbhypf 3471 axsepgfromrep 5170 dfid3 5435 opeliunxp 5592 imai 5918 coi1 6096 opabex3d 7675 opabex3rd 7676 opabex3 7677 fsplit 7822 fsplitOLD 7823 mapsnend 8612 dfac5lem1 9588 dfac5lem3 9590 dffix2 33782 sscoid 33790 elfuns 33792 pmapglb 37372 polval2N 37508 opeliun2xp 45129 |
Copyright terms: Public domain | W3C validator |