![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version |
Description: Version of equsexv 2269 with a disjoint variable condition, and of equsex 2426 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2003. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1841 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | equsalvw 2003 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
5 | 1, 4 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
6 | 5 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: equvinv 2028 cleljust 2117 sbelx 2254 cleljustab 2720 sbhypfOLD 3557 axsepgfromrep 5315 dfid3 5596 opeliunxp 5767 imai 6103 coi1 6293 opabex3d 8006 opabex3rd 8007 opabex3 8008 fsplit 8158 mapsnend 9101 dfac5lem1 10192 dfac5lem3 10194 dffix2 35869 sscoid 35877 elfuns 35879 pmapglb 39727 polval2N 39863 tfsconcat0i 43307 opeliun2xp 48057 |
Copyright terms: Public domain | W3C validator |