| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version | ||
| Description: Version of equsexv 2271 with a disjoint variable condition, and of equsex 2418 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2005. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1844 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | equsalvw 2005 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
| 6 | 5 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: equvinv 2030 cleljust 2120 sbelx 2256 cleljustab 2712 axsepgfromrep 5234 dfid3 5517 opeliunxp 5686 opeliun2xp 5687 imai 6028 coi1 6216 opabex3d 7903 opabex3rd 7904 opabex3 7905 fsplit 8053 mapsnend 8964 elirrv 9489 dfac5lem1 10020 dfac5lem3 10022 dffix2 35954 sscoid 35962 elfuns 35964 pmapglb 39875 polval2N 40011 tfsconcat0i 43443 |
| Copyright terms: Public domain | W3C validator |