![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version |
Description: Version of equsexv 2259 with a disjoint variable condition, and of equsex 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2007. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1845 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | equsalvw 2007 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
5 | 1, 4 | bitr3i 276 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
6 | 5 | con4bii 320 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∃wex 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 |
This theorem is referenced by: equvinv 2032 cleljust 2115 sbelx 2245 cleljustab 2712 sbhypfOLD 3539 axsepgfromrep 5297 dfid3 5577 opeliunxp 5743 imai 6073 coi1 6261 opabex3d 7954 opabex3rd 7955 opabex3 7956 fsplit 8105 mapsnend 9038 dfac5lem1 10120 dfac5lem3 10122 dffix2 34946 sscoid 34954 elfuns 34956 pmapglb 38727 polval2N 38863 tfsconcat0i 42177 opeliun2xp 47087 |
Copyright terms: Public domain | W3C validator |