MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexvw Structured version   Visualization version   GIF version

Theorem equsexvw 2005
Description: Version of equsexv 2269 with a disjoint variable condition, and of equsex 2416 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2004. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexvw (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsexvw
StepHypRef Expression
1 alinexa 1843 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
2 equsalvw.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32notbid 318 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43equsalvw 2004 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓)
51, 4bitr3i 277 . 2 (¬ ∃𝑥(𝑥 = 𝑦𝜑) ↔ ¬ 𝜓)
65con4bii 321 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  equvinv  2029  cleljust  2118  sbelx  2254  cleljustab  2710  sbhypfOLD  3508  axsepgfromrep  5244  dfid3  5529  opeliunxp  5698  opeliun2xp  5699  imai  6034  coi1  6223  opabex3d  7923  opabex3rd  7924  opabex3  7925  fsplit  8073  mapsnend  8984  elirrv  9525  dfac5lem1  10054  dfac5lem3  10056  dffix2  35887  sscoid  35895  elfuns  35897  pmapglb  39758  polval2N  39894  tfsconcat0i  43328
  Copyright terms: Public domain W3C validator