MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexvw Structured version   Visualization version   GIF version

Theorem equsexvw 2009
Description: Version of equsexv 2263 with a disjoint variable condition, and of equsex 2418 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2008. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexvw (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsexvw
StepHypRef Expression
1 alinexa 1846 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
2 equsalvw.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43equsalvw 2008 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓)
51, 4bitr3i 276 . 2 (¬ ∃𝑥(𝑥 = 𝑦𝜑) ↔ ¬ 𝜓)
65con4bii 320 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  equvinv  2033  cleljust  2117  sbelx  2249  cleljustab  2718  sbhypf  3481  axsepgfromrep  5216  dfid3  5483  opeliunxp  5645  imai  5971  coi1  6155  opabex3d  7781  opabex3rd  7782  opabex3  7783  fsplit  7928  fsplitOLD  7929  mapsnend  8780  dfac5lem1  9810  dfac5lem3  9812  dffix2  34134  sscoid  34142  elfuns  34144  pmapglb  37711  polval2N  37847  opeliun2xp  45556
  Copyright terms: Public domain W3C validator