MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equsexvw Structured version   Visualization version   GIF version

Theorem equsexvw 2008
Description: Version of equsexv 2259 with a disjoint variable condition, and of equsex 2417 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2007. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.)
Hypothesis
Ref Expression
equsalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
equsexvw (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem equsexvw
StepHypRef Expression
1 alinexa 1845 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦𝜑))
2 equsalvw.1 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
32notbid 317 . . . 4 (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓))
43equsalvw 2007 . . 3 (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓)
51, 4bitr3i 276 . 2 (¬ ∃𝑥(𝑥 = 𝑦𝜑) ↔ ¬ 𝜓)
65con4bii 320 1 (∃𝑥(𝑥 = 𝑦𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1539  wex 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1782
This theorem is referenced by:  equvinv  2032  cleljust  2115  sbelx  2245  cleljustab  2712  sbhypfOLD  3539  axsepgfromrep  5297  dfid3  5577  opeliunxp  5743  imai  6073  coi1  6261  opabex3d  7954  opabex3rd  7955  opabex3  7956  fsplit  8105  mapsnend  9038  dfac5lem1  10120  dfac5lem3  10122  dffix2  34946  sscoid  34954  elfuns  34956  pmapglb  38727  polval2N  38863  tfsconcat0i  42177  opeliun2xp  47087
  Copyright terms: Public domain W3C validator