| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version | ||
| Description: Version of equsexv 2269 with a disjoint variable condition, and of equsex 2416 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2004. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | equsalvw 2004 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
| 6 | 5 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 cleljust 2118 sbelx 2254 cleljustab 2710 sbhypfOLD 3508 axsepgfromrep 5244 dfid3 5529 opeliunxp 5698 opeliun2xp 5699 imai 6034 coi1 6223 opabex3d 7923 opabex3rd 7924 opabex3 7925 fsplit 8073 mapsnend 8984 elirrv 9525 dfac5lem1 10054 dfac5lem3 10056 dffix2 35887 sscoid 35895 elfuns 35897 pmapglb 39758 polval2N 39894 tfsconcat0i 43328 |
| Copyright terms: Public domain | W3C validator |