Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version |
Description: Version of equsexv 2263 with a disjoint variable condition, and of equsex 2418 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2008. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
Ref | Expression |
---|---|
equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alinexa 1846 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 3 | equsalvw 2008 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
5 | 1, 4 | bitr3i 276 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
6 | 5 | con4bii 320 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: equvinv 2033 cleljust 2117 sbelx 2249 cleljustab 2718 sbhypf 3481 axsepgfromrep 5216 dfid3 5483 opeliunxp 5645 imai 5971 coi1 6155 opabex3d 7781 opabex3rd 7782 opabex3 7783 fsplit 7928 fsplitOLD 7929 mapsnend 8780 dfac5lem1 9810 dfac5lem3 9812 dffix2 34134 sscoid 34142 elfuns 34144 pmapglb 37711 polval2N 37847 opeliun2xp 45556 |
Copyright terms: Public domain | W3C validator |