| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > equsexvw | Structured version Visualization version GIF version | ||
| Description: Version of equsexv 2269 with a disjoint variable condition, and of equsex 2416 with two disjoint variable conditions, which requires fewer axioms. See also the dual form equsalvw 2004. (Contributed by BJ, 31-May-2019.) (Proof shortened by Wolf Lammen, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| equsalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| equsexvw | ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alinexa 1843 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
| 2 | equsalvw.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 4 | 3 | equsalvw 2004 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → ¬ 𝜑) ↔ ¬ 𝜓) |
| 5 | 1, 4 | bitr3i 277 | . 2 ⊢ (¬ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ¬ 𝜓) |
| 6 | 5 | con4bii 321 | 1 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: equvinv 2029 cleljust 2118 sbelx 2254 cleljustab 2710 sbhypfOLD 3511 axsepgfromrep 5249 dfid3 5536 opeliunxp 5705 opeliun2xp 5706 imai 6045 coi1 6235 opabex3d 7944 opabex3rd 7945 opabex3 7946 fsplit 8096 mapsnend 9007 dfac5lem1 10076 dfac5lem3 10078 dffix2 35893 sscoid 35901 elfuns 35903 pmapglb 39764 polval2N 39900 tfsconcat0i 43334 |
| Copyright terms: Public domain | W3C validator |