| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvalw | Structured version Visualization version GIF version | ||
| Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvalw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
| cbvalw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
| cbvalw.3 | ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
| cbvalw.4 | ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) |
| cbvalw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalw.1 | . . 3 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | cbvalw.2 | . . 3 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | cbvalw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | biimpd 229 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
| 5 | 1, 2, 4 | cbvaliw 2005 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 6 | cbvalw.3 | . . 3 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 7 | cbvalw.4 | . . 3 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 8 | 3 | biimprd 248 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 → 𝜑)) |
| 9 | 8 | equcoms 2019 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 10 | 6, 7, 9 | cbvaliw 2005 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 11 | 5, 10 | impbii 209 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cbvalvw 2035 hbn1fw 2045 |
| Copyright terms: Public domain | W3C validator |