MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvalw Structured version   Visualization version   GIF version

Theorem cbvalw 2038
Description: Change bound variable. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 9-Apr-2017.)
Hypotheses
Ref Expression
cbvalw.1 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
cbvalw.2 𝜓 → ∀𝑥 ¬ 𝜓)
cbvalw.3 (∀𝑦𝜓 → ∀𝑥𝑦𝜓)
cbvalw.4 𝜑 → ∀𝑦 ¬ 𝜑)
cbvalw.5 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalw (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvalw
StepHypRef Expression
1 cbvalw.1 . . 3 (∀𝑥𝜑 → ∀𝑦𝑥𝜑)
2 cbvalw.2 . . 3 𝜓 → ∀𝑥 ¬ 𝜓)
3 cbvalw.5 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
43biimpd 228 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
51, 2, 4cbvaliw 2009 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
6 cbvalw.3 . . 3 (∀𝑦𝜓 → ∀𝑥𝑦𝜓)
7 cbvalw.4 . . 3 𝜑 → ∀𝑦 ¬ 𝜑)
83biimprd 247 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
98equcoms 2023 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
106, 7, 9cbvaliw 2009 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
115, 10impbii 208 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  cbvalvw  2039  hbn1fw  2048
  Copyright terms: Public domain W3C validator