| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2206 and 19.21h 2286. Instance of sylg 1822. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1822 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1794 ax-4 1808 |
| This theorem is referenced by: nexdh 1864 albidh 1865 alrimiv 1926 ax12i 1965 cbvaliw 2004 nf5dh 2146 alrimi 2212 hbnd 2295 cbv3v 2336 cbv3 2401 eujustALT 2571 axi5r 2699 hbralrimi 3143 ralidmw 4507 bnj1093 34995 bj-abvALT 36909 bj-gabssd 36938 mpobi123f 38170 axc4i-o 38900 equidq 38926 aev-o 38933 ax12f 38942 axc5c4c711 44425 hbimpg 44579 gen11nv 44642 |
| Copyright terms: Public domain | W3C validator |