MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1827
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2203 and 19.21h 2287. Instance of sylg 1826. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1826 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1799  ax-4 1813
This theorem is referenced by:  nexdh  1869  albidh  1870  alrimiv  1931  ax12i  1971  cbvaliw  2010  nf5dh  2145  alrimi  2209  hbnd  2296  cbv3v  2334  cbv3  2397  eujustALT  2572  axi5r  2701  hbralrimi  3105  ralidmw  4435  bnj1093  32860  bj-abvALT  35019  bj-gabssd  35051  mpobi123f  36247  axc4i-o  36839  equidq  36865  aev-o  36872  ax12f  36881  axc5c4c711  41908  hbimpg  42063  gen11nv  42126
  Copyright terms: Public domain W3C validator