Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2203 and 19.21h 2287. Instance of sylg 1826. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.) |
Ref | Expression |
---|---|
alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylg 1826 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1799 ax-4 1813 |
This theorem is referenced by: nexdh 1869 albidh 1870 alrimiv 1931 ax12i 1971 cbvaliw 2010 nf5dh 2145 alrimi 2209 hbnd 2296 cbv3v 2334 cbv3 2397 eujustALT 2572 axi5r 2701 hbralrimi 3105 ralidmw 4435 bnj1093 32860 bj-abvALT 35019 bj-gabssd 35051 mpobi123f 36247 axc4i-o 36839 equidq 36865 aev-o 36872 ax12f 36881 axc5c4c711 41908 hbimpg 42063 gen11nv 42126 |
Copyright terms: Public domain | W3C validator |