![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2205 and 19.21h 2286. Instance of sylg 1820. (Contributed by NM, 9-Jan-1993.) |
Ref | Expression |
---|---|
alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylg 1820 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1792 ax-4 1806 |
This theorem is referenced by: nexdh 1863 albidh 1864 alrimiv 1925 ax12i 1964 cbvaliw 2003 nf5dh 2145 alrimi 2211 hbnd 2295 cbv3v 2336 cbv3 2400 eujustALT 2570 axi5r 2698 hbralrimi 3142 ralidmw 4514 bnj1093 34973 bj-abvALT 36890 bj-gabssd 36919 mpobi123f 38149 axc4i-o 38880 equidq 38906 aev-o 38913 ax12f 38922 axc5c4c711 44397 hbimpg 44552 gen11nv 44615 |
Copyright terms: Public domain | W3C validator |