MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1825
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2210 and 19.21h 2289. Instance of sylg 1824. (Contributed by NM, 9-Jan-1993.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1824 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1796  ax-4 1810
This theorem is referenced by:  nexdh  1866  albidh  1867  alrimiv  1928  ax12i  1967  cbvaliw  2007  nf5dh  2150  alrimi  2216  hbnd  2298  cbv3v  2335  cbv3  2397  eujustALT  2567  axi5r  2695  hbralrimi  3122  ralidmw  4455  bnj1093  34992  bj-abvALT  36951  bj-gabssd  36980  mpobi123f  38212  axc4i-o  39007  equidq  39033  aev-o  39040  ax12f  39049  axc5c4c711  44504  hbimpg  44657  gen11nv  44720
  Copyright terms: Public domain W3C validator