MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1827
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2201 and 19.21h 2284. Instance of sylg 1826. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1826 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1798  ax-4 1812
This theorem is referenced by:  nexdh  1869  albidh  1870  alrimiv  1931  ax12i  1971  cbvaliw  2010  nf5dh  2144  alrimi  2207  hbnd  2293  cbv3v  2332  cbv3  2397  eujustALT  2567  axi5r  2696  hbralrimi  3145  ralidmw  4508  bnj1093  33991  bj-abvALT  35787  bj-gabssd  35816  mpobi123f  37030  axc4i-o  37768  equidq  37794  aev-o  37801  ax12f  37810  axc5c4c711  43160  hbimpg  43315  gen11nv  43378
  Copyright terms: Public domain W3C validator