![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2201 and 19.21h 2284. Instance of sylg 1826. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.) |
Ref | Expression |
---|---|
alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylg 1826 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1798 ax-4 1812 |
This theorem is referenced by: nexdh 1869 albidh 1870 alrimiv 1931 ax12i 1971 cbvaliw 2010 nf5dh 2144 alrimi 2207 hbnd 2293 cbv3v 2332 cbv3 2397 eujustALT 2567 axi5r 2696 hbralrimi 3145 ralidmw 4508 bnj1093 33991 bj-abvALT 35787 bj-gabssd 35816 mpobi123f 37030 axc4i-o 37768 equidq 37794 aev-o 37801 ax12f 37810 axc5c4c711 43160 hbimpg 43315 gen11nv 43378 |
Copyright terms: Public domain | W3C validator |