| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2287. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1823 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: nexdh 1865 albidh 1866 alrimiv 1927 ax12i 1966 cbvaliw 2006 nf5dh 2148 alrimi 2214 hbnd 2296 cbv3v 2333 cbv3 2395 eujustALT 2565 axi5r 2693 hbralrimi 3119 ralidmw 4459 bnj1093 34953 bj-abvALT 36891 bj-gabssd 36920 mpobi123f 38152 axc4i-o 38887 equidq 38913 aev-o 38920 ax12f 38929 axc5c4c711 44384 hbimpg 44538 gen11nv 44601 |
| Copyright terms: Public domain | W3C validator |