MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1823
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2206 and 19.21h 2286. Instance of sylg 1822. (Contributed by NM, 9-Jan-1993.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1822 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1794  ax-4 1808
This theorem is referenced by:  nexdh  1864  albidh  1865  alrimiv  1926  ax12i  1965  cbvaliw  2004  nf5dh  2146  alrimi  2212  hbnd  2295  cbv3v  2336  cbv3  2401  eujustALT  2571  axi5r  2699  hbralrimi  3143  ralidmw  4507  bnj1093  34995  bj-abvALT  36909  bj-gabssd  36938  mpobi123f  38170  axc4i-o  38900  equidq  38926  aev-o  38933  ax12f  38942  axc5c4c711  44425  hbimpg  44579  gen11nv  44642
  Copyright terms: Public domain W3C validator