![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2195 and 19.21h 2276. Instance of sylg 1817. (Contributed by NM, 9-Jan-1993.) (Revised by BJ, 31-Mar-2021.) |
Ref | Expression |
---|---|
alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylg 1817 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1789 ax-4 1803 |
This theorem is referenced by: nexdh 1860 albidh 1861 alrimiv 1922 ax12i 1962 cbvaliw 2001 nf5dh 2135 alrimi 2201 hbnd 2285 cbv3v 2326 cbv3 2391 eujustALT 2561 axi5r 2691 hbralrimi 3141 ralidmw 4511 bnj1093 34644 bj-abvALT 36418 bj-gabssd 36447 mpobi123f 37668 axc4i-o 38402 equidq 38428 aev-o 38435 ax12f 38444 axc5c4c711 43869 hbimpg 44024 gen11nv 44087 |
Copyright terms: Public domain | W3C validator |