| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2287. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1823 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: nexdh 1865 albidh 1866 alrimiv 1927 ax12i 1966 cbvaliw 2006 nf5dh 2148 alrimi 2214 hbnd 2296 cbv3v 2333 cbv3 2395 eujustALT 2565 axi5r 2693 hbralrimi 3123 ralidmw 4467 bnj1093 34963 bj-abvALT 36888 bj-gabssd 36917 mpobi123f 38149 axc4i-o 38884 equidq 38910 aev-o 38917 ax12f 38926 axc5c4c711 44383 hbimpg 44537 gen11nv 44600 |
| Copyright terms: Public domain | W3C validator |