| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2210 and 19.21h 2289. Instance of sylg 1824. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1824 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1796 ax-4 1810 |
| This theorem is referenced by: nexdh 1866 albidh 1867 alrimiv 1928 ax12i 1967 cbvaliw 2007 nf5dh 2150 alrimi 2216 hbnd 2298 cbv3v 2335 cbv3 2397 eujustALT 2567 axi5r 2695 hbralrimi 3122 ralidmw 4455 bnj1093 34992 bj-abvALT 36951 bj-gabssd 36980 mpobi123f 38212 axc4i-o 39007 equidq 39033 aev-o 39040 ax12f 39049 axc5c4c711 44504 hbimpg 44657 gen11nv 44720 |
| Copyright terms: Public domain | W3C validator |