MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1821
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2205 and 19.21h 2286. Instance of sylg 1820. (Contributed by NM, 9-Jan-1993.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1820 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1792  ax-4 1806
This theorem is referenced by:  nexdh  1863  albidh  1864  alrimiv  1925  ax12i  1964  cbvaliw  2003  nf5dh  2145  alrimi  2211  hbnd  2295  cbv3v  2336  cbv3  2400  eujustALT  2570  axi5r  2698  hbralrimi  3142  ralidmw  4514  bnj1093  34973  bj-abvALT  36890  bj-gabssd  36919  mpobi123f  38149  axc4i-o  38880  equidq  38906  aev-o  38913  ax12f  38922  axc5c4c711  44397  hbimpg  44552  gen11nv  44615
  Copyright terms: Public domain W3C validator