MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrimih Structured version   Visualization version   GIF version

Theorem alrimih 1824
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2288. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.)
Hypotheses
Ref Expression
alrimih.1 (𝜑 → ∀𝑥𝜑)
alrimih.2 (𝜑𝜓)
Assertion
Ref Expression
alrimih (𝜑 → ∀𝑥𝜓)

Proof of Theorem alrimih
StepHypRef Expression
1 alrimih.1 . 2 (𝜑 → ∀𝑥𝜑)
2 alrimih.2 . 2 (𝜑𝜓)
31, 2sylg 1823 1 (𝜑 → ∀𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-gen 1795  ax-4 1809
This theorem is referenced by:  nexdh  1865  albidh  1866  alrimiv  1927  ax12i  1966  cbvaliw  2006  nf5dh  2148  alrimi  2214  hbnd  2297  cbv3v  2337  cbv3  2402  eujustALT  2572  axi5r  2700  hbralrimi  3131  ralidmw  4488  bnj1093  35016  bj-abvALT  36930  bj-gabssd  36959  mpobi123f  38191  axc4i-o  38921  equidq  38947  aev-o  38954  ax12f  38963  axc5c4c711  44400  hbimpg  44554  gen11nv  44617
  Copyright terms: Public domain W3C validator