| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2288. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1823 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: nexdh 1865 albidh 1866 alrimiv 1927 ax12i 1966 cbvaliw 2006 nf5dh 2148 alrimi 2214 hbnd 2297 cbv3v 2337 cbv3 2402 eujustALT 2572 axi5r 2700 hbralrimi 3131 ralidmw 4488 bnj1093 35016 bj-abvALT 36930 bj-gabssd 36959 mpobi123f 38191 axc4i-o 38921 equidq 38947 aev-o 38954 ax12f 38963 axc5c4c711 44400 hbimpg 44554 gen11nv 44617 |
| Copyright terms: Public domain | W3C validator |