| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version | ||
| Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2287. Instance of sylg 1823. (Contributed by NM, 9-Jan-1993.) |
| Ref | Expression |
|---|---|
| alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
| alrimih.2 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
| 2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | 1, 2 | sylg 1823 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1795 ax-4 1809 |
| This theorem is referenced by: nexdh 1865 albidh 1866 alrimiv 1927 ax12i 1966 cbvaliw 2006 nf5dh 2148 alrimi 2214 hbnd 2296 cbv3v 2333 cbv3 2395 eujustALT 2565 axi5r 2693 hbralrimi 3123 ralidmw 4471 bnj1093 34970 bj-abvALT 36895 bj-gabssd 36924 mpobi123f 38156 axc4i-o 38891 equidq 38917 aev-o 38924 ax12f 38933 axc5c4c711 44390 hbimpg 44544 gen11nv 44607 |
| Copyright terms: Public domain | W3C validator |