![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alrimih | Structured version Visualization version GIF version |
Description: Inference form of Theorem 19.21 of [Margaris] p. 90. See 19.21 2208 and 19.21h 2291. Instance of sylg 1821. (Contributed by NM, 9-Jan-1993.) |
Ref | Expression |
---|---|
alrimih.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
alrimih.2 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimih | ⊢ (𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimih.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | alrimih.2 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | sylg 1821 | 1 ⊢ (𝜑 → ∀𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-gen 1793 ax-4 1807 |
This theorem is referenced by: nexdh 1864 albidh 1865 alrimiv 1926 ax12i 1966 cbvaliw 2005 nf5dh 2147 alrimi 2214 hbnd 2300 cbv3v 2341 cbv3 2405 eujustALT 2575 axi5r 2703 hbralrimi 3150 ralidmw 4531 bnj1093 34956 bj-abvALT 36873 bj-gabssd 36902 mpobi123f 38122 axc4i-o 38854 equidq 38880 aev-o 38887 ax12f 38896 axc5c4c711 44370 hbimpg 44525 gen11nv 44588 |
Copyright terms: Public domain | W3C validator |